
CS 240
Computer Systems

#6: Heap Memory Allocation and malloc

Feb. 3, 2022 · ❄ · Wade Fagen-Ulmschneider

Heap Allocation

Up until now, we have arbitrarily placed memory with the process

page table – however, all modern Operating Systems (OSes) organize

the memory of a process in a predictable way:

06/memory-addr.c

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

int val;
printf("&val: %p\n", &val);

void *ptr = malloc(0x1000);
printf("&ptr: %p\n", &ptr);
printf(" ptr: %p\n", ptr);

void *ptr2 = malloc(0x1000);
printf("&ptr2: %p\n", &ptr2);
printf(" ptr2: %p\n", ptr2);

int arr[4096];
printf("&arr: %p\n", &arr);

return 0;

Page Table:

....

As a programmer, we talk about these different regions of memory as

different “types” of memory:

__________ Memory _________ Memory

Q1: What if we access memory beyond the end of our heap? (Or any

other region not allocated in our page table?)

Efficient Use of Heap Memory

During the lifetime of a single process, we will allocate and free

memory many times. Consider a simple program:

06/heap.c

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

int *a = malloc(4096);
printf("a = %p\n", a);
free(a);

int *b = malloc(4096);
printf("b = %p\n", b);

int *c = malloc(4096);
printf("c = %p\n", c);

int *d = malloc(4096);
printf("d = %p\n", d);

free(b);
free(c);

int *e = malloc(5000);
printf("e = %p\n", e);

int *g = malloc(10);
printf("g = %p\n", g);

int *g = malloc(10);
printf("g = %p\n", g);

Heap v1:
(Without reuse after free)

Heap v2:
(With reuse after free)

Q2: How much memory is used if we do not reuse memory?

Q3: How much memory is used with optimal reuse of memory?

- What happens to our memory over time?

- When we have “holes” in our heap, how do we decide what

hole to use?

Data Structures for Heap Management

When we manage heap memory, we need to use memory to help us

store memory:

● Overhead:

● Allocated Memory:

06/heap.c

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

int *a = malloc(4096);
printf("a = %p\n", a);
free(a);

int *b = malloc(4096);
printf("b = %p\n", b);

int *c = malloc(4096);
printf("c = %p\n", c);

int *d = malloc(4096);
printf("d = %p\n", d);

free(b);
free(c);

int *e = malloc(5000);
printf("e = %p\n", e);

int *g = malloc(10);
printf("g = %p\n", g);

int *g = malloc(10);
printf("g = %p\n", g);

Heap w/ Data Structures:
(Without reuse after free)

Metadata-based Approach to Memory Storage

Allocation Internals

Every process has a single heap starting point and a heap ending point

in its virtual memory space that is provided by the Operating System.

● The initial heap size is: _________________

○

● A process grows/shrinks its heap using:

void *sbrk(intptr_t increment);

● MP3 (“mallocc”) is released Friday and will have you build

your own malloc, using the sbrk call, and require you to

efficiently re-use memory just like the Linux kernel does!

○ EC Deadline:

○ Deadline #1:

○ Deadline #2:

Implementation Considerations

1. [Runtime]:

2. [Block Splitting]:

3. [Block Coellessing]:

