
CS 240
Computer Systems

#2: Character Encodings and C Programming

Jan. 20, 2022 · Wade Fagen-Ulmschneider

Representing Letters: ASCII

Representing numbers is great -- but what about words? Can we

make sentences with binary data?

● Key Idea: Every letter is _____ binary bits.*

(This means that every letter is _____ hex digits.)

● Global standard called the American Standard Code for

Information Interchange (ASCII) is a ___________

______________ for translating numbers to characters.

ASCII Character Encoding Examples:

Binary Hex Char. Binary Hex Char.

0b 0100 0001 0x41 A 0b 0110 0001 0x61 a

0b 0100 0010 0x42 B 0b 0110 0010 0x62 b

C c

D d

0b0010 0100 0x24 $ 0b0111 1011 0x7b {
...and now we can form sentences!

Q: Are there going to be any issues with ASCII?

Representing Letters: Other Character Encodings

Since ASCII uses only 8 bits, we are limited to only 256 unique

characters. There’s far more than 256 characters -- and what about

EMOJIs?? 🎉
● Many other character encodings exist other than ASCII.

● The most widely used character encoding is known as

Unicode Transformation Format (8-bit) or ______.

● Standard is ISO/IEC 10646 (Latest update is :2002, or v13).

Technical Details of UTF-8 Encoding

UTF-8 uses a ___________-bit design where each character by be

any of the following:

Length Byte #1 Byte #2 Byte #3 Byte #4

1-byte 0___ ____

2-bytes: 110_ ____ 10__ ____

3-bytes: 1110 ____ 10__ ____ 10__ ____

4-bytes: 1111 0___ 10__ ____ 10__ ____ 10__ ____

Unicode characters are represented by U+## (where ## is the hex

value of the character encoding data) and all 1-byte characters match

the ASCII character encoding:

● ‘a’ is ASCII ______, or ________.

Example: ε (epsilon) is defined as U+03b5. How do we encode this?

Example: I received the following binary message encoded in UTF-8:

0100 1000 0110 1001 1111 0000 1001 1111 1000 1110 1000 1001

1. What is the hexadecimal representation of this message?

2. What is the byte length of this message? ______

3. What is the character length of this message? ______

4. What does the message say?

Programming in C

Today, you’ll begin your very first program in C!

● You already know how to program in C++! 🎉
● Programming in C is a simplification of the C++ programming.

1. Program Starting Point of ALL C PROGRAMS:

2. Printing Using printf() (and include <stdio.h>):

02/printf.c printf has a variable

number of arguments:

First argument

Additional arguments

1
2
3
4
5
6
7
8
9
10
11
12
13

#include <stdio.h>

int main() {
int i = 42;
char *s = "Hello, world!";
float f = 3.14;

printf("%d %s %f\n", i, s, f);
printf("%d\n", s[0]);
printf("%d\n", s);
printf("%d\n", f);
return 0;

}

3. Pointers:

4. Heap Memory

Allocation:

02/malloc.c

1
2
3
4
5
6
7
8
9

#include <stdlib.h>

int main() {
char *s = malloc(10);
int *num = malloc(sizeof(int));

printf("%p %p\n", s, num);
return 0;

}

5. Strings – There is no “data type” in C known as a string. Instead,

we refer to “C Strings” as a sequence of characters:

● A “C string” is just a character pointer: ________.

● The string continues until it reaches a ________ byte.

● C will automatically include the NULL byte ONLY when using

double quotes in your code (not counted as part of the length,

but does require memory – extremely tricky!)

02/string.c

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

char *s = malloc(6);
strcpy(s, "cs240");
printf("s[0]: 0x%x == %d == %c\n", s[0], s[0], s[0]);
printf("s[4]: 0x%x == %d == %c\n", s[4], s[4], s[4]);
printf("s[5]: 0x%x == %d == %c\n", s[5], s[5], s[5]);
printf("s == \"%s\", strlen(s): %ld\n\n", s, strlen(s));

char *s2 = s + 2;
printf("s2[0]: 0x%x == %d == %c\n", s2[0], s2[0], s2[0]);
printf("s2 == \"%s\", strlen(s2): %ld\n\n", s2, strlen(s2));

*s2 = 0;
printf("s2[0]: 0x%x == %d == %c\n", s2[0], s2[0], s2[0]);
printf("s2 == \"%s\", strlen(s2): %ld\n\n", s2, strlen(s2));

printf("s == \"%s\", strlen(s): %ld\n", s, strlen(s));

…what is happening in memory?

02/utf8.c

6
7
8
9
10
11
12
13
14

char *s = malloc(5);
s[0]=0xF0; s[1]=0x9F; s[2]=0x8E; s[3]=0x89; s[4]=0x00;

char *s1 = "\xF0\x9F\x8E\x89";
char *s2 = "🎉";
char *s3 = "\U0001f389"; // \U - must be 8 bytes

printf("%s %s %s %s\n", s, s1, s2, s3);
printf("strlen(): %ld %ld %ld %ld\n", strlen(s), strlen(s1),

strlen(s2), strlen(s3));

…how can we represent non-ASCII characters in C code?

Some extremely useful built in string functions:

- strcmp(char *s1, char *s2) -- Compares two strings

- strcat(char *dest, char *src) -- Concatenate two strings

- strcpy(char *dest, char *src) -- Copies a string

- strlen(char *s) -- Returns the length of the string

