| #2: Character Encodings and C Programming

CS 240

Computer Systems |Jan. 20, 2022 - Wade Fagen-Ulmschneider

Representing Letters: ASCII
Representing numbers is great -- but what about words? Can we
make sentences with binary data?

__ binary bits.*
hex digits.)

e Key Idea: Every letter is
(This means that every letter is

e Global standard called the American Standard Code for
Information Interchange (ASCII) is a
for translating numbers to characters.

[ASCII Character Encoding Examples:

Binary Hex| Char. Binary Hex| Char.

ob 0100 0001| Ox41| A 6b 0110 0001 0x61 a

ob 0100 0010 0Ox42| B ob 6110 6010 0x62(b

C c

D d

0beo10 0100 ©0x24| $ 0bo111 1011 0x7b {

...and now we can form sentences!

Q: Are there going to be any issues with ASCII?

Representing Letters: Other Character Encodings
Since ASCII uses only 8 bits, we are limited to only 256 unique
characters. There’s far more than 256 characters -- and what about
EMOJIs?? &

e Many other character encodings exist other than ASCII.

e The most widely used character encoding is known as

Unicode Transformation Format (8-bit) or
e Standard is ISO/IEC 10646 (Latest update is :2002, or v13).

Technical Details of UTF-8 Encoding

UTF-8 uses a -bit design where each character by be
any of the following;:
Length | Byte #1 Byte #2 Byte #3 Byte #4
1-byte |0___ ____
2-bytes: | 116_ ____ |10__ ____
3-bytes: [1110 ____ [16__ ____ 10__ ____
4-bytes: | 1111 o___ [16__ ____ 10__ ____ 10__ ____

Unicode characters are represented by U+## (where ## is the hex
value of the character encoding data) and all 1-byte characters match
the ASCII character encoding;:

e ‘a’isASCII ,or

Example: € (epsilon) is defined as U+83b5. How do we encode this?

Example: I received the following binary message encoded in UTF-8:
0100 1000 0110 1001 1111 0000 1001 1111 1000 1110 1000 1001

1. What is the hexadecimal representation of this message?

2. What is the byte length of this message?
3. What is the character length of this message?

4. What does the message say?

Programming in C

Today, you’ll begin your very first program in C!
e You already know how to program in C++! &

e Programming in C is a simplification of the C++ programming.

1. Program Starting Point of ALL. C PROGRAMS:

2, Printing Using printf() (and include <stdio.h>):

5. Strings — There is no “data type” in C known as a string. Instead,
we refer to “C Strings” as a sequence of characters:

02/printf.c printf has a variable
1 | #include <stdio.hs number of arguments:
2 First argument
3 |int main() {
4 int 1 = 42;
5 char *s = "Hello, world!";
6| float f = 3.14; Additional arguments
7
8 printf("%d %s %f\n", i, s, f);
9 printf("%d\n", s[@]);
10 printf("%d\n", s);
11 printf("%d\n", f);
12 return 0;
13|}
3. Pointers:
4. Heap Memory 82/malloc.c
Allocation:
1 |#include <stdlib.h>
2
3 |int main() {
4 char *s = malloc(10);
5 int *num = malloc(sizeof(int));
6
7 printf("%p %p\n", s, num);
8 return 0;
9|}

e A “Cstring” is just a character pointer: .

e The string continues until it reaches a byte.

o Cwill automatically include the NULL byte ONLY when using
double quotes in your code (not counted as part of the length,
but does require memory — extremely tricky!)

02/string.c

6| char *s = malloc(6);

7| strcpy(s, "cs240");

8| printf("s[@]: Bx%x == %d == %c\n", s[0], s[0@], s[0]);

9| printf("s[4]: Ox%x == %d == %c\n", s[4], s[4], s[4]);

10| printf("s[5]: 0x%x == %d == %c\n", s[5], s[5], s[5]);

11| printf("s == \"%s\", strlen(s): %ld\n\n", s, strlen(s));

12

13 char *s2 = s + 2;

14| printf("s2[B8]: Ox%x == %d == %c\n", s2[0], s2[0], s2[0]);

15 printf("s2 == \"%s\", strlen(s2): %ld\n\n", s2, strlen(s2));

16

17 *s2 = 0;

18| printf("s2[B8]: Ox%x == %d == %c\n", s2[0], s2[0], s2[0]);

19| printf("s2 == \"%s\", strlen(s2): %ld\n\n", s2, strlen(s2));

20

21 printf("s == \"%s\", strlen(s): %ld\n", s, strlen(s));

...what is happening in memory?

02/utf8.c

6| char *s = malloc(5);

7| s[0]=0xFO; s[1]=0x9F; s[2]=0x8E; s[3]=0x89; s[4]=0x00;

8

9 char *s1 = "\xFO\x9F\x8E\x89";

10| char *s2 = "&";

11 char *s3 = "\U0001f389"; // \U - must be 8 bytes

12

13| printf("%s %s %s %s\n", s, s1, s2, s3);

14| printf("strlen(): %1d %1d %1d %1ld\n", strlen(s), strlen(s1),
strlen(s2), strlen(s3));

...how can we represent non-ASCII characters in C code?

Some extremely useful built in string functions:

strcmp(char *s1, char *s2) -- Compares two strings
strcat(char *dest, char *src) -- Concatenate two strings
strcpy(char *dest, char *src) -- Copies a string
strlen(char *s) -- Returns the length of the string

