Page Eviction/Replacement Strategies:
When we need to remove a page from RAM and store it on disk, how
do we decide which page to remove?

CS 240 Week 5: File Formats and Memory

Computer CS 240, Spring 2021 - Week 5
Systems Wade Fagen-Ulmschneider

Virtual Memory - Limited Resources [1]:
In our memory hierarchy, we know memory pages are loaded into the
processor cache -- nearly always a page at a time -- but what if we

want more storage than our RAM?
Page Accesses: 17 33 40 17 43 8 99 33 99 17
RAM: P1 Page Table: | Disk Pages: 1: Load Program
[0]: [0]: 2: Run PC1
[1]: [1]: ./programCode (1/5) - malloc(4000) R
[2]: [2]: ./programCode (2/5) 3. Run PC2:
[3]: [3]: /programCode (3/5) - malloc(10000) A
[4]: programCode 4/ - Open M
%2]]: /programCode (5/5) hiddenImage.png
7l - Read all of image
[81: 4: Run PC3
[9]: - Access OG 4 KB
[10]: - Finish .
[11]: lhiddenImage.png 1St program [2] .
[12]: lhiddenImage.png
[13]: hiddenImage.png
[14]:
[15]:
Page Accesses: 17 33 40 17 43 8 99 33 99 17

...assume that this system has 4 KB pages.

Q1: What is the range of possible file sizes for hiddenImage.png?

T

Q2: What is the range of possible file sizes for . /programCode? [3]:

Page Accesses: 17 33 40 17 43 8 99 33 99 17

Q3: What is the size of the heap immediately before the program
finished?

2 > m

[4]:

Page Accesses: 17 33 40 17 43 8 99 33 99 17

2 > m

[5]:

Page Accesses: 17 33 40 17 43 8 99 33 99 17

T

Remember: We count the number of page faults, or the number of
times we needed to replace the contents of a page of RAM, as a metric
to determine the performance of an eviction scheme.

To accomplish page eviction, every page table entry has many status
bits:
1.

Segmentation Faults

RAM:

P1 Page Table:

Disk Pages:

[0]:

[1]:

./programCode (PC1)

./programCode (PC1)

[2]:

./programCode (PC2)

./programCode (PC2)

[31:

./programCode (PC3)

./programCode (PC3)

./programCode (PC4)

./programCode (PC4)

./programCode (PC5)

./programCode (PC5)

[Heap - 4 KiB

[Heap - 4 KiB

[Heap - 4 KiB

[Heap - 4KiB

lhiddenImage.png

hiddenImage.png

lhiddenImage.png

1: Load Program
2: Run PC1

- malloc(4000)

3. Run PC2:

- malloc(10000)

- Open
hiddenImage.png
- Read all of image
4: Run PC3

- Access OG 4 KB
- Finish program

Q: What happens if we access the address of the bold entry inside of
our page table above?

Every address between o - 2% is addressable.

We know the following:
e Every page table entry takes 4B of space
[J
[J

Q: How big is our page table?

Each 4 KB page needs its own page table entry.

Q: How many entries can our page table have if we need to fit a page
table into a single page?

Q: What can be to make this happen?

