
CS 240
Computer
Systems

Week 11: Docker and IaaS / PaaS / SaaS

CS 240, Spring 2021 - Week 10

Wade Fagen-Ulmschneider

As we build increasingly complex and distributed software, we need to

think about what level of a system is most useful:

IaaS
Infrastructure
as a Service

CaaS
Containers
as a Service

PaaS
Platform as
a Service

FaaS
Functions
as a Service

SaaS
Software as
a Service

Data Data Data Data Data

Functions Functions Functions Functions Functions

Applications Applications Applications Applications Applications

Runtime Runtime Runtime Runtime Runtime

Containers* Containers Containers* Containers* Containers*

OS OS OS OS OS

Virtualization Virtualization Virtualization Virtualization Virtualization

Hardware Hardware Hardware Hardware Hardware

Abstracted by

Provider/Vendor

Customer Managed

Unit of Scale

Customer Managed

Infrastructure as a Service (IaaS)

When you choose to host your technology on IaaS, you are provided

virtualization running on top of managed hardware.

● Example: Amazon EC2 / Google Compute Engine

● Why IaaS?

Containers as a Service (CaaS)

When you choose to host your technology on CaaS, you are provided a

container server running on top of managed virtualization.

● Example: Amazon ECS / Google App Engine

● Why CaaS?

Platform as a Service (PaaS)

When you choose to use PaaS, you are provided a fully functional

platform ready to be used as infrastructure.

● Database Platforms: Amazon RDS / Google Cloud SQL /

Amazon DocumentDB / Google DataStore

● Software Runtime Platforms: Amazon Elastic Beanstalk /

AutoML / etc

● Why PaaS?

Functions as a Service (FaaS)

When you choose to use FaaS, you provide a source code function and

its executed within a runtime environment on-demand.

● Database Platforms: Amazon Lambda / Google Cloud

Functions

● Why FaaS?

Software as a Service (SaaS)

When you choose to use SaaS, you are provided a complete managed

software solution where you will never see source code.

Running IaaS / Using a Virtual Machine:

Except for running the hardware yourself (“self-provisioned”), this is

the most basic form of software infrastructure:

● You choose hardware characteristics of your host machine (#

of CPUs, RAM, networking, storage, etc) and the operating

system (ex: Ubuntu, Windows, etc).

● You are given “root” or “sudo” privileges to the OS and need to

install the software stack that you want to run -- but you also

manage the security and reliability of the OS!

Example: Google Compute Engine Pricing (April 2020)

For a VM running 24/7 that will never shutdown/get killed:

● $0.021811 / vCPU hour == $191.06 /vCPU year

● $0.002923 / GiB hour == $25.61 /GiB year

● +$0.085 / GiB bandwidth == $87.04 /TiB bandwidth

E2 General Purpose Machines, Sourced: https://cloud.google.com/compute/all-pricing

Running CaaS / Using a Container:

Suppose you are uninterested in running your own OS -- what if you

just want to specify the runtime environment (binaries / libraries) you

want your code to run in?

Solution: Containers!

● Many different container solutions, including lxc (Linux

containers), rkt, and Docker.

● We will focus on Docker Containers in CS 240, but the

principles of development are similar across all containers.

Docker Container: Basic Design

docker is a containerization engine (and associated management

tools) that allows for container images to run a managed runtime

within your operating system via a docker image file.

Example: Recall your MP6 web service that wrapped your MP2

solution into a web service:

Dockerfile

1
2
3
4
5
6
7
8
9
10
11
12
13

FROM python:3.9

Setup python libraries:
COPY requirements.txt /
RUN pip install -r /requirements.txt

Copy needed files to run:
COPY png-analyze /
COPY app.py /
COPY templates /templates

Run server:
CMD ["python", "-m", "flask", "run",
"--host=0.0.0.0"]

Line 1 (FROM):

Lines 4, 8-10 (COPY):

Line 5 (RUN):

LINE 13 (CMD):

Effectively, a dockerfile simply specifies the base image, all files

needed, any setup commands (that are run during the build phase),

and then the command to run during the run phase. To build it:

$ docker build --tag cs240-mp6 .

https://cloud.google.com/compute/all-pricing

Running a Docker Image

$ docker run --rm -it -p 5000:5000 cs240-mp6

● docker run

● --rm

● -it

● -p

● cs240-mp6

What do we expect to happen?

Mounting a Directory within Docker:

$ docker run --rm -it -v /home/waf/mp6-temp:/temp -p
5000:5000 cs240-mp6

● -v

When is using the -v option critical?

Docker Images as Building Blocks

Every dockerfile starts with a `FROM <image>` -- all the way down to

`FROM scratch` (an image that contains no starting environment).

cs240-mp6 image:

FROM python:3.9
...

python:3.9 image:

FROM buildpack-deps:buster
...

buildpack-deps:buster image:

FROM buildpack-deps:buster-scm
...

buildpack-deps:buster-scm image:

FROM buildpack-deps:buster-curl
...

buildpack-deps:buster-curl image:

FROM debian:buster
...

debian:buster image:

FROM scratch
ADD rootfs.tar.xz /
CMD ["bash"]

Building Services for Consumption

Without knowing it, you have been writing Application Programming

Interfaces -- commonly known as APIs -- to build services for others to

consume your data:

● In MP6:

○ /extract, allows the extraction of a hidden “uiuc” GIF

from a PNG image.

● In MP7:

○ /:subject/:course, returns the GPA and course credit

information from the courses-microservice

○ /scheduleGPA, returns the GPA of a provided

schedule

There are a lot of details in how to write a good API for others to use!

RESTful APIs:

Four Key Architectural Features:

- [Stateless]:

- [Client-Server]:

- [Explicit Caching]:

- [Layered System]:

Non-RESTful APIs:

Many other APIs exist outside of the RESTful API space -- particularly

any if the request requires state.

Example Service: MapReduce

Example Input:

The quick brown fox jumps over the lazy dog

[0] [1] [2] [3] [4] [5] [6] [7] [8]

Map Function:

Reduce Function:

Example Input:

admin2: Champaign
region: Illinois
country: US
cases: 6390
date: 2020-10-29

admin2: Champaign
region: Illinois
country: US
cases: 6285
date: 2020-10-28

admin2: Champaign
region: Sicilia
country: Italy
cases: 18325
date: 2020-10-28

admin2: Champaign
region: Lombardia
country: Italy
cases: 162968
date: 2020-10-28

[0] [1] [2] [3]

Source:

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_c

ovid_19_data/csse_covid_19_daily_reports

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_daily_reports
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_daily_reports

