
CS 240
Computer Systems

#6: Page Eviction, Replacement, Heap Mgmt

Sept. 9, 2021 · Wade Fagen-Ulmschneider

Segmentation Faults

RAM:
[0]:

[1]:

[2]:

[3]:

P1 Page Table:

@ DISK[240]

@ DISK[241]

@ DISK[242]

@ DISK[243]

@ DISK[244]

@ 0x1000 (RAM[1])

@ 0x3000 (RAM[3])

@ 0x2000 (RAM[2])

@ DISK[249]

Disk Pages:
...

./programCode (PC1)

./programCode (PC2)

./programCode (PC3)

./programCode (PC4)

./programCode (PC5)

hiddenImage.png

hiddenImage.png

hiddenImage.png

...

1: Load Program

2: Run PC1

- malloc(4000)

3. Run PC2:

- malloc(10000)

- Open

hiddenImage.png

- Read all of image

4: Run PC3

- Access OG 4 KB

- Finish program

Q: What happens if we access the address of the bold entry inside of

our page table above?

Page Eviction/Replacement Strategies:

When we need to remove a page from RAM and store it on disk, how

do we decide which page to remove given a page access pattern?

Strategy #1:

17 33 40 17 43 8 99 33 99 17

R

A

M

Strategy #2:

17 33 40 17 43 8 99 33 99 17

R

A

M

Strategy #3:

17 33 40 17 43 8 99 33 99 17

R

A

M

Strategy #4:

17 33 40 17 43 8 99 33 99 17

R

A

M

Other Strategies:

Sample Program:

Can we see the use of the heap and the stack in a real program?

06-see-heap-and-stack-usage.c

5
6
7
8
9
10
11
12
13
14
15
16

int val;
printf("&val: %p\n", &val);

int *ptr = malloc(sizeof(int));
printf("&ptr: %p\n", &ptr);
printf(" ptr: %p\n", ptr);

int *ptr2 = malloc(sizeof(int));
printf("&ptr2: %p\n", &ptr2);
printf(" ptr2: %p\n", ptr2);

return 0;

Page Table:

....

Efficient Use of Heap Memory

During the lifetime of a single process, we will allocate and free

memory many times. Consider a simple program:

06-heap-example.c

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

int *a = malloc(4096);
printf("a = %p\n", a);
free(a);

int *b = malloc(4096);
printf("b = %p\n", b);

int *c = malloc(4096);
printf("c = %p\n", c);

int *d = malloc(4096);
printf("d = %p\n", d);

free(b);
free(c);

int *e = malloc(5000);
printf("e = %p\n", e);

int *g = malloc(10);
printf("g = %p\n", g);

int *g = malloc(10);
printf("g = %p\n", g);

Heap:

(Without reuse

after free)

Heap:

(With reuse after

free)

How much memory is used if we do not reuse memory?

How much memory is used with optimal reuse of memory?

- What happens to our memory over time?

- When we have “holes” in our heap, how do we decide what

hole to use?

Heap Management Strategies

There are many strategies on the best way to allocate memory to the

heap:

#1: [No Reuse]:

#2: [Free Lists]:

Free Block Allocation Strategies:

1.

2.

3.

Allocation Internals

Every process has a single heap starting point and a heap ending point

in its virtual memory space that is provided by the Operating System.

● The initial heap size is: _________________

○

● A process grows/shrinks its heap using:

void *sbrk(intptr_t increment);

● MP3 (“the malloc MP”) is released tonight and will have you

build your own malloc, using the sbrk call, and require you to

efficiently re-use memory just like the Linux kernel does!

