CS 240

Computer Systems

| #6: Page Eviction, Replacement, Heap Mgmt

Segmentation Faults

|Sept. 9, 2021 - Wade Fagen-Ulmschneider

RAM:

P1 Page Table:

Disk Pages:

[o]:

[1]:

[2]:

@ DISK[240

|./programCode (PC1

./programCode (PC2)

[3]:

|./programCode (PC3

./programCode (PC4)

DISK[241]
DISK[242]
DISK[243]
DISK][2.

|./programCode (PC3

@ 0x1000 (RAM[1])

0x3000 (RAM[3])

0x2000 (RAM[2])

DISK[249]

|hiddenImage.png

hiddenImage.png
hiddenImage.png

1: Load Program
2: Run PC1

- malloc(4000)

3. Run PC2:

- malloc(10000)

- Open
hiddenImage.png
- Read all of image
4: Run PC3

- Access OG 4 KB
- Finish program

Q: What happens if we access the address of the bold entry inside of
our page table above?

Page Eviction/Replacement Strategies:
When we need to remove a page from RAM and store it on disk, how
do we decide which page to remove given a page access pattern?

Strategy #1:
17 | 33 | 40 | 17 | 43 8 99 | 33 | 99 | 17
R
A
M
Strategy #2:
17 | 33 | 40 | 17 | 43 8 99 | 33 | 99 | 17
R
A
M

Strategy #3:

17 | 33 | 40 | 17 | 43 8 99 (33 | 99 | 17
R
A
M
Strategy #4.:
17 | 33 | 40 | 17 | 43 8 99 (33 | 99 | 17
R
A
M
Other Strategies:

Sample Program:
Can we see the use of the heap and the stack in a real program?

06-see-heap-and-stack-usage.c

00 N O G

11
12
13
14
15
16

int val;
printf("&val: %p\n", &val);

int *ptr = malloc(sizeof(int));
printf("&ptr: %p\n", &ptr);
printf(" ptr: %p\n", ptr);

int *ptr2 = malloc(sizeof(int));
printf("&ptr2: %p\n", &ptr2);
printf(" ptr2: %p\n", ptr2);

return 0;

Page Table:

Efficient Use of Heap Memory Heap Management Strategies

During the lifetime of a single process, we will allocate and free There are many strategies on the best way to allocate memory to the
memory many times. Consider a simple program: heap:
06-heap-example.c #1: [No Reuse]:
5(int *a = malloc(4096); Heap: Heap:
. n, _ o n . (Without reuse (With reuse after
6 pr1ntf(.a = %p\n", a); after free) ce)
7 | free(a); #2: [Free Lists]:
8

9 | int *b = malloc(4096);
10 | printf("b = %p\n", b);

11 Free Block Allocation Strategies:
12 [int *c = malloc(4096);

13 | printf("c = %p\n", c); 1.

14

15 [int *d = malloc(4096);

16 | printf("d = %p\n", d); 2.

17

18 | free(b);

19 | free(c); 3-

20

21 | int *e = malloc(5000);
22 | printf("e = %p\n", e);

23

24 | int *g = malloc(10);

25 | printf("g = %p\n", g); Allocation Internals

26 Every process has a single heap starting point and a heap ending point
27 [int *g = malloc(10); in its virtual memory space that is provided by the Operating System.

28 | printf("g = %p\n", g);

The initial heap size is:

How much memory is used if we do not reuse memory?
O

How much memory is used with optimal reuse of memory? .] .
e A process grows/shrinks its heap using:

void *sbrk(intptr_t increment);
- What happens to our memory over time?

- When we have “holes” in our heap, how do we decide what e MP3 (“the malloc MP”) is released tonight and will have you
hole to use? build your own malloc, using the sbrk call, and require you to

efficiently re-use memory just like the Linux kernel does!

