
December 1, 2006 ©2006 Craig Zilles 1

Cache Coherence and Atomic Operations in Hardware

  Previously, we introduced multi-core parallelism.
—  Today we’ll look at 2 things:

1.  Cache coherence
2.  Instruction support for synchronization.

—  And some pitfalls of parallelization.
—  And solve a few mysteries.

Intel Core i7

May 6, 2009 2

The Cache Coherence Problem

—  Caches are critical to modern high-speed processors

I/O devices

Memory

P 1

$ $ $

P 2 P 3

5
u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

1. LD u
2. LD u

5. LD u
4. LD u

3. ST u

—  Multiple copies of a block can easily get inconsistent
•  Processor writes; I/O writes

—  Processors could see different values for u after event 3

Cache Coherence Invariant

  Each block of memory is in exactly one of these 3 states:

1.   Uncached: Memory has the only copy

2.   Writable: Exactly 1 cache has the block and only that
processor can write to it.

3.   Read-only: Any number of caches can hold the block, and
their processors can read it.

December 1, 2006 ©2006 Craig Zilles 3

invariant | inˈve(ә)rēәnt |
noun Mathematics
a function, quantity, or property that remains unchanged when a specified
transformation is applied.

Snoopy Cache Coherence Schemes

  Bus is a broadcast medium & caches know what they have

  Cache controller “snoops” all transactions on the shared bus
—  Relevant transaction if for a block it contains
—  Take action to ensure coherence

•  Invalidate or supply value
Depends on state of the block and the protocol

May 6, 2009 4

May 6, 2009 5

Maintain the invariant by tracking “state”

  Every cache block has an associated state
—  This will supplant the valid and dirty bits

  A cache controller updates the state of
blocks in response to processor and snoop
events and generates bus transactions

  Snoopy protocol
—  set of states
—  state-transition diagram
—  actions

Snoop

State Tag Data

° ° °

Cache Controller

Processor

Ld/St

MSI protocol

This is the simplest possible protocol, corresponding directly to the 3 options
in our invariant

  Invalid State: the data in the cache is not valid.

  Shared State: multiple caches potentially have copies of this data; they
will all have it in shared state. Memory has a copy that is consistent
with the cached copy.

  Dirty or Modified: only 1 cache has a copy. Memory has a copy that is
inconsistent with the cached copy. Memory needs to be updated when
the data is displaced from the cache or another processor wants to read
the same data.

5/6/09 6

Actions

Processor Actions:
  Load
  Store
  Eviction: processor wants to replace cache block

Bus Actions:
  GETS: request to get data in shared state
  GETX: request for data in modified state (i.e., eXclusive access)
  UPGRADE: request for exclusive access to data owned in shared state

Cache Controller Actions:
  Source Data: this cache provides the data to the requesting cache
  Writeback: this cache updates the block in memory

December 1, 2006 ©2006 Craig Zilles 7

8

Modified

Shared Invalid

MSI Protocol

May 6, 2009

May 6, 2009 9

The Cache Coherence Problem Solved

I/O devices

Memory

P 1

$ $ $

P 2 P 3

u :5
1

u :5 S

2

u :5 S

1. LD u
2. LD u

5. LD u
4. LD u

3. ST u

GETS GETS UPGRADE

I M :7
GETS

 :7

 u :7 S

Source Data

Real Cache Coherence Protocols

  Are more complex than MSI (see MESI and MEOSI)

  Some modern chips don’t use buses (too slow)
— Directory based: Alternate protocol doesn’t require

snooping

  But this gives you the basic idea.

December 1, 2006 ©2006 Craig Zilles 10

December 1, 2006 ©2006 Craig Zilles 11

A simple piece of code

unsigned counter = 0;

void *do_stuff(void * arg) {
 for (int i = 0 ; i < 200000000 ; ++ i) {
 counter ++;
 }
 return arg;
}

How long does this program take?

How can we make it faster?

adds one to counter

December 1, 2006 ©2006 Craig Zilles 12

A simple piece of code

unsigned counter = 0;

void *do_stuff(void * arg) {
 for (int i = 0 ; i < 200000000 ; ++ i) {
 counter ++;
 }
 return arg;
}

How long does this program take? Time for 200000000 iterations

How can we make it faster? Run iterations in parallel

adds one to counter

December 1, 2006 ©2006 Craig Zilles 13

unsigned counter = 0;

void *do_stuff(void * arg) {
 for (int i = 0 ; i < 200000000 ; ++ i) {
 counter ++;
 }
 return arg;
}

Exploiting a multi-core processor

#1 #2

Split for-loop across
multiple threads running
on separate cores

December 1, 2006 ©2006 Craig Zilles 14

How much faster?

December 1, 2006 ©2006 Craig Zilles 15

How much faster?

  We’re expecting a speedup of 2

  OK, perhaps a little less because of Amdahl’s Law
—  overhead for forking and joining multiple threads

  But its actually slower!! Why??

  Here’s the mental picture that we have – two processors, shared memory

counter

shared variable in memory

December 1, 2006 ©2006 Craig Zilles 16

This mental picture is wrong!

  We’ve forgotten about caches!
—  The memory may be shared, but each processor has its own L1 cache
—  As each processor updates counter, it bounces between L1 caches

Multiple bouncing
slows performance

December 1, 2006 ©2006 Craig Zilles 17

The code is not only slow, its WRONG!

  Since the variable counter is shared, we can get a data race

  Increment operation: counter++ MIPS equivalent:

  A data race occurs when data is accessed and manipulated by multiple
processors, and the outcome depends on the sequence or timing of these
events.
 Sequence 1 Sequence 2

Processor 1 Processor 2 Processor 1 Processor 2
lw $t0, counter lw $t0, counter
addi $t0, $t0, 1 lw $t0, counter
sw $t0, counter addi $t0, $t0, 1

 lw $t0, counter addi $t0, $t0, 1
 addi $t0, $t0, 1 sw $t0, counter
 sw $t0, counter sw $t0, counter

counter increases by 2 counter increases by 1 !!

lw $t0, counter
addi $t0, $t0, 1
sw $t0, counter

December 1, 2006 ©2006 Craig Zilles 18

What is the minimum value at the end of the program?

December 1, 2006 ©2006 Craig Zilles 19

Atomic operations

  You can show that if the sequence is particularly nasty, the final value of
counter may be as little as 2, instead of 200000000.

  To fix this, we must do the load-add-store in a single step
—  We call this an atomic operation
—  We’re saying: “Do this, and don’t allow other processors to

interleave memory accesses while doing this.”

  “Atomic” in this context means “as if it were a single operation”
—  either we succeed in completing the operation with no interruptions

or we fail to even begin the operation (because someone else was
doing an atomic operation)

—  Furthermore, it should be “isolated” from other threads.

  x86 provides a “lock” prefix that tells the hardware:
“don’t let anyone read/write the value until I’m done with it”
—  Not the default case (because it is slower!)

December 1, 2006 ©2006 Craig Zilles 20

What if we want to generalize beyond increments?

  The lock prefix only works for individual x86 instructions.
  What if we want to execute an arbitrary region of code without

interference?
—  Consider a red-black tree used by multiple threads.

December 1, 2006 ©2006 Craig Zilles 21

What if we want to generalize beyond increments?

  The lock prefix only works for individual x86 instructions.
  What if we want to execute an arbitrary region of code without

interference?
—  Consider a red-black tree used by multiple threads.

  Best mainstream solution: Locks
—  Implements mutual exclusion

•  You can’t have it if I have it, I can’t have it if you have it

December 1, 2006 ©2006 Craig Zilles 22

What if we want to generalize beyond increments?

  The lock prefix only works for individual x86 instructions.
  What if we want to execute an arbitrary region of code without

interference?
—  Consider a red-black tree used by multiple threads.

  Best mainstream solution: Locks
—  Implement “mutual exclusion”

•  You can’t have it if I have, I can’t have it if you have it

when lock = 0, set lock = 1, continue

lock = 0

December 1, 2006 ©2006 Craig Zilles 23

Lock acquire code

 High-level version MIPS version

unsigned lock = 0;

while (1) {
if (lock == 0) {

lock = 1;
break;

}
}

  What problem do you see with this?

spin: lw $t0, 0($a0)
 bne $t0, 0, spin
 li $t1, 1
 sw $t1, 0($a0)

&lock

December 1, 2006 ©2006 Craig Zilles 24

Race condition in lock-acquire

spin: lw $t0, 0($a0)
 bne $t0, 0, spin
 li $t1, 1
 sw $t1, 0($a0)

December 1, 2006 ©2006 Craig Zilles 25

Doing “lock acquire” atomically

  Make sure no one gets between load and store

  Common primitive: compare-and-swap (old, new, addr)
—  If the value in memory matches “old”, write “new” into memory

temp = *addr;

if (temp == old) {

*addr = new;

} else {

old = temp;

}

  x86 calls it CMPXCHG (compare-exchange)

— Use the lock prefix to guarantee itʼs atomicity

December 1, 2006 ©2006 Craig Zilles 26

Using CAS to implement locks

  Acquiring the lock:
 lock_acquire:
 li $t0, 0 # old
 li $t1, 1 # new

 cas $t0, $t1, lock

 beq $t0, $t1, lock_acquire # failed, try again

  Releasing the lock:
 sw $0, lock

December 1, 2006 ©2006 Craig Zilles 27

Conclusions

  When parallel threads access the same data, potential for data races
—  Even true on uniprocessors due to context switching

  We can prevent data races by enforcing mutual exclusion
—  Allowing only one thread to access the data at a time
—  For the duration of a critical section

  Mutual exclusion can be enforced by locks
—  Programmer allocates a variable to “protect” shared data
—  Program must perform: 0 → 1 transition before data access
—  1 → 0 transition after

  Locks can be implemented with atomic operations
—  (hardware instructions that enforce mutual exclusion on 1 data item)
—  compare-and-swap

•  If address holds “old”, replace with “new”

