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Cache Coherence and Atomic Operations in Hardware 

  Previously, we introduced multi-core parallelism. 
—  Today we’ll look at 2 things:  

1.  Cache coherence 
2.  Instruction support for synchronization. 

—  And some pitfalls of parallelization. 
—  And solve a few mysteries. 

Intel Core i7 
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The Cache Coherence Problem 

—  Caches are critical to modern high-speed processors 
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—  Multiple copies of a block can easily get inconsistent  
•  Processor writes; I/O writes 

—  Processors could see different values for u after event 3 



Cache Coherence Invariant 

  Each block of memory is in exactly one of these 3 states: 

1.   Uncached:  Memory has the only copy 

2.   Writable: Exactly 1 cache has the block and only that 
processor can write to it. 

3.   Read-only: Any number of caches can hold the block, and 
their processors can read it. 
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invariant | inˈve(ә)rēәnt | 
noun Mathematics 
a function, quantity, or property that remains unchanged when a specified 
transformation is applied. 



Snoopy Cache Coherence Schemes 

  Bus is a broadcast medium & caches know what they have 

  Cache controller “snoops” all transactions on the shared bus 
—  Relevant transaction if for a block it contains 
—  Take action to ensure coherence 

•  Invalidate or supply value 
Depends on state of the block and the protocol  
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Maintain the invariant by tracking “state” 

  Every cache block has an associated state 
—  This will supplant the valid and dirty bits 

  A cache controller updates the state of 
blocks in response to processor and snoop 
events and generates bus transactions 

  Snoopy protocol 
—  set of states 
—  state-transition diagram 
—  actions 

Snoop 
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° ° ° 

Cache Controller 

Processor 

Ld/St 



MSI protocol 

This is the simplest possible protocol, corresponding directly to the 3 options 
in our invariant 

  Invalid State: the data in the cache is not valid. 

  Shared State: multiple caches potentially have copies of this data; they 
will all have it in shared state.  Memory has a copy that is consistent 
with the cached copy. 

  Dirty or Modified: only 1 cache has a copy. Memory has a copy that is 
inconsistent with the cached copy. Memory needs to be updated when 
the data is displaced from the cache or another processor wants to read 
the same data.  
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Actions 

Processor Actions: 
  Load 
  Store 
  Eviction: processor wants to replace cache block 

Bus Actions: 
  GETS: request to get data in shared state 
  GETX: request for data in modified state (i.e., eXclusive access) 
  UPGRADE: request for exclusive access to data owned in shared state 

Cache Controller Actions: 
  Source Data: this cache provides the data to the requesting cache 
  Writeback: this cache updates the block in memory 
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The Cache Coherence Problem Solved 

I/O devices 

Memory 
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Real Cache Coherence Protocols 

  Are more complex than MSI  (see MESI and MEOSI) 

  Some modern chips don’t use buses (too slow) 
— Directory based: Alternate protocol doesn’t require 

snooping 

  But this gives you the basic idea. 
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A simple piece of code 

unsigned counter = 0; 

void *do_stuff(void * arg) { 
  for (int i = 0 ; i < 200000000 ; ++ i) { 
     counter ++; 
  } 
  return arg; 
} 

How long does this program take?  

How can we make it faster?  

adds one to counter 
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A simple piece of code 

unsigned counter = 0; 

void *do_stuff(void * arg) { 
  for (int i = 0 ; i < 200000000 ; ++ i) { 
     counter ++; 
  } 
  return arg; 
} 

How long does this program take? Time for 200000000 iterations 

How can we make it faster? Run iterations in parallel 

adds one to counter 
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unsigned counter = 0; 

void *do_stuff(void * arg) { 
  for (int i = 0 ; i < 200000000 ; ++ i) { 
     counter ++; 
  } 
  return arg; 
} 

Exploiting a multi-core processor 

#1 #2 

Split for-loop across 
multiple threads running 
on separate cores 
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How much faster? 
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How much faster? 

  We’re expecting a speedup of 2 

  OK, perhaps a little less because of Amdahl’s Law 
—  overhead for forking and joining multiple threads 

  But its actually slower!! Why?? 

  Here’s the mental picture that we have – two processors, shared memory 

counter 

shared variable in memory 
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This mental picture is wrong! 

  We’ve forgotten about caches! 
—  The memory may be shared, but each processor has its own L1 cache 
—  As each processor updates counter, it bounces between L1 caches 

Multiple bouncing 
slows performance 



December 1, 2006 ©2006 Craig Zilles 17 

The code is not only slow, its WRONG! 

  Since the variable counter is shared, we can get a data race 

  Increment operation: counter++     MIPS equivalent: 

  A data race occurs when data is accessed and manipulated by multiple 
processors, and the outcome depends on the sequence or timing of these 
events. 
  Sequence 1      Sequence 2 

Processor 1  Processor 2    Processor 1      Processor 2 
lw   $t0, counter      lw   $t0, counter 
addi $t0, $t0, 1        lw   $t0, counter 
sw   $t0, counter      addi $t0, $t0, 1 

   lw   $t0, counter      addi $t0, $t0, 1 
   addi $t0, $t0, 1    sw   $t0, counter 
   sw   $t0, counter      sw   $t0, counter 

counter increases by 2        counter increases by 1 !! 

lw   $t0, counter 
addi $t0, $t0, 1 
sw   $t0, counter 
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What is the minimum value at the end of the program? 



December 1, 2006 ©2006 Craig Zilles 19 

Atomic operations 

  You can show that if the sequence is particularly nasty, the final value of 
counter may be as little as 2, instead of 200000000. 

  To fix this, we must do the load-add-store in a single step 
—  We call this an atomic operation 
—  We’re saying: “Do this, and don’t allow other processors to 

interleave memory accesses while doing this.” 

  “Atomic” in this context means “as if it were a single operation” 
—  either we succeed in completing the operation with no interruptions 

or we fail to even begin the operation (because someone else was 
doing an atomic operation) 

—  Furthermore, it should be “isolated” from other threads. 

  x86 provides a “lock” prefix that tells the hardware: 
“don’t let anyone read/write the value until I’m done with it” 
—  Not the default case (because it is slower!) 
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What if we want to generalize beyond increments? 

  The lock prefix only works for individual x86 instructions. 
  What if we want to execute an arbitrary region of code without 

interference? 
—  Consider a red-black tree used by multiple threads. 
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What if we want to generalize beyond increments? 

  The lock prefix only works for individual x86 instructions. 
  What if we want to execute an arbitrary region of code without 

interference? 
—  Consider a red-black tree used by multiple threads. 

  Best mainstream solution: Locks 
—  Implements mutual exclusion 

•  You can’t have it if I have it, I can’t have it if you have it 
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What if we want to generalize beyond increments? 

  The lock prefix only works for individual x86 instructions. 
  What if we want to execute an arbitrary region of code without 

interference? 
—  Consider a red-black tree used by multiple threads. 

  Best mainstream solution: Locks 
—  Implement “mutual exclusion”  

•  You can’t have it if I have, I can’t have it if you have it 

when lock = 0, set lock = 1, continue 

lock = 0 
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Lock acquire code 

 High-level version     MIPS version 

unsigned lock = 0; 

while (1) { 
if (lock == 0) { 

lock = 1; 
break; 

} 
} 

  What problem do you see with this? 

spin: lw  $t0, 0($a0) 
 bne  $t0, 0, spin 
 li  $t1, 1 
 sw  $t1, 0($a0) 

&lock 
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Race condition in lock-acquire 

spin: lw  $t0, 0($a0) 
 bne  $t0, 0, spin 
 li  $t1, 1 
 sw  $t1, 0($a0) 
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Doing “lock acquire” atomically 

  Make sure no one gets between load and store 

  Common primitive: compare-and-swap (old, new, addr) 
—  If the value in memory matches “old”, write “new” into memory 

temp = *addr;

if (temp == old) {


*addr = new;

} else {


old = temp;

}


  x86 calls it CMPXCHG (compare-exchange)

— Use the lock prefix to guarantee itʼs atomicity
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Using CAS to implement locks 

  Acquiring the lock: 
 lock_acquire: 
  li  $t0, 0   # old 
  li  $t1, 1   # new 

  cas $t0, $t1, lock 

  beq $t0, $t1, lock_acquire  # failed, try again 

  Releasing the lock: 
  sw  $0, lock 
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Conclusions 

  When parallel threads access the same data, potential for data races 
—  Even true on uniprocessors due to context switching 

  We can prevent data races by enforcing mutual exclusion 
—  Allowing only one thread to access the data at a time 
—  For the duration of a critical section 

  Mutual exclusion can be enforced by locks 
—  Programmer allocates a variable to “protect” shared data 
—  Program must perform:  0 → 1 transition before data access 
—                                      1 → 0 transition after    

  Locks can be implemented with atomic operations 
—  (hardware instructions that enforce mutual exclusion on 1 data item)  
—  compare-and-swap 

•  If address holds “old”, replace with “new” 


