Cache Coherence and Atomic Operations in Hardware

= Previously, we introduced multi-core parallelism.
— Today we’ll look at 2 things:

1. Cache coherence
2. Instruction support for synchronization.

— And some pitfalls of parallelization. B
— And solve a few mysteries.

Memory Controller

'nm_.z 7

:
Pick w4 oF= = BE T TE
: ‘
0

| - JE g g =R BETRET O
L\mJ.mt' . Shared L3 Cacl’_\e'j_fj:.,"

i‘:t.

Intel Core i7
December 1, 2006 ©2006 Craig Zilles

The Cache Coherence Problem

@ @ I/0 devices
u:s5— |

Memory

— Caches are critical to modern high-speed processors

— Multiple copies of a block can easily get inconsistent
e Processor writes; 1/0 writes
— Processors could see different values for u after event 3

May 6, 2009 2

Cache Coherence Invariant

= Each block of memory is in exactly one of these 3 states:

1. Uncached: Memory has the only copy

2. Writable: Exactly 1 cache has the block and only that
processor can write to it.

3. Read-only: Any number of caches can hold the block, and
their processors can read it.

invariant | in've(o)réont |

noun Mathematics

a function, quantity, or property that remains unchanged when a specified
transformation 1s applied.

December 1, 2006 ©2006 Craig Zilles

Snoopy Cache Coherence Schemes

Bus shoop

Cache-memory
Mem _‘ |/0 devices transaction

= Bus is a broadcast medium & caches know what they have

= Cache controller “snoops” all transactions on the shared bus
— Relevant transaction if for a block it contains
— Take action to ensure coherence

 Invalidate or supply value
Depends on state of the block and the protocol

May 6, 2009

Maintain the invariant by tracking “state”

Every cache block has an associated state
— This will supplant the valid and dirty bits

= A cache controller updates the state of
blocks in response to processor and snoop
events and generates bus transactions

= Snoopy protocol

— set of states

— state-transition diagram
— actions

May 6, 2009

Processor
\‘ Ld/St
\
Cache Controller
State| Tag |Data |
\ Z J
Snoop

MSI protocol

This is the simplest possible protocol, corresponding directly to the 3 options
in our invariant

ﬁ

= |Invalid State: the data in the cache is not valid. Vﬂlil J"fﬁ

= Shared State: multiple caches potentially have copies of this data; they
will all have it in shared state. Memory has a copy that is consistent

with the cached copy. qq\;é &7,(7 MJ,-O\

= Dirty or Modified: only 1 cache has a copy. Memory has a copy that is
inconsistent with the cached copy. Memory needs to be updated when
the data is displaced from the cache or another processor wants to read

the same data. whl 4:;47 en J o ik

5/6/09 6

Actions

Processor Actions:

= |oad
= Store

= Eviction: processor wants to replace cache block

Bus Actions:

= GETS: request to get data in shared state

= GETX: request for data in modified state (i.e., eXclusive access)

= UPGRADE: request for exclusive access to data owned in shared state

Cache Controller Actions:

= Source Data: this cache provides the data to the requesting cache
= Writeback: this cache updates the block in memory

December 1, 2006 ©2006 Craig Zilles

MSI Protocol

Modified

May 6, 2009

The Cache Coherence Problem Solved

—

u -7 M
Source’' Data| GESRADE

1LDu

I/0 devices

N oou7 @

May 6, 2009

Real Cache Coherence Protocols _
ﬂ
= Are more complex than MSI (see MESI and MEQSQ'
é“A’r J)’JJ
= Some modern chips don’t use buses (too slow)

— Directory based: Alternate protocol doesn’t require
snooping

= But this gives you the basic idea.

December 1, 2006 ©2006 Craig Zilles 10

A simple piece of code

unsigned counter = 0;

void *do stuff (void * arg) {
for (int 1i = 0 ; i < 200000000 ; ++ i) {

counter ++; \

} adds one to counter

return arg;

How long does this program take?
A

How can we make it faster?

""l L, famuc \ize_

December 1, 2006 ©2006 Craig Zilles

11

A simple piece of code

unsigned counter = 0;

void *do stuff (void * arg) {
for (int 1i = 0 ; i < 200000000 ; ++ i) {

counter ++; \

} adds one to counter

return arg;

How long does this program take? Time for 200000000 iterations

How can we make it faster? Run iterations in parallel

December 1, 2006 ©2006 Craig Zilles 12

Exploiting a multi-core processor

unsigned counter = 0; Split for-loop across

multiple threads running
on separate cores
void *do stuff (void * arg) {

for (int i 0O ; i < 200000000 ; ++ i) {
counter ++;

}

return arg;

December 1, 2006 ©2006 Craig Zilles 13

How much faster?

a)(m»’r «Mw]S '\Q&:\'

December 1, 2006 ©2006 Craig Zilles

14

How much faster?

= We’re expecting a speedup of 2

= OK, perhaps a little less because of Amdahl’s Law
— overhead for forking and joining multiple threads

= But its actually slower!! Why??

= Here’s the mental picture that we have - two processors, shared memory

counter

[~) .
Memory shared variable in memory

December 1, 2006 ©2006 Craig Zilles 15

This mental picture is wrong!

= We’ve forgotten about caches!
— The memory may be shared, but each processor has its own L1 cache
— As each processor updates counter, it bounces between L1 caches

.
o

Memory

Multiple bouncing
slows performance

A

December 1, 2006 ©2006 Craig Zilles 16

The code is not only slow, its WRONG!

= Since the variable counter is shared, we can get a data race

» |ncrement operation: counter++

MIPS equivalent: 1w °t0, counter
addi $t0, $t0, 1
SW St0, counter

= A data race occurs when data is accessed and manipulated by multiple
processors, and the outcome depends on the sequence or timing of these

events.
Sequence 1
Processor 1 Processor 2
1w St0, counter
addi $t0, $t0, 1
sSw St0, counter
1w $t0, counter
addi $t0, s$t0, 1
SW St0, counter

counter increases by 2

December 1, 2006

Sequence 2
Processor 1

1w $t0, counter

Processor 2

1w St0, counter
addi $t0, $t0, 1

addi $t0, $t0, 1
SW St0, counter
SwW St0, counter

counter increases by 1 !!

©2006 Craig Zilles 17

What is the minimum value at the end of the program?

Aa,g}t«!/ ~ 200 M“u""

(OO

@ .

0D
b <« =2 L0 o — &
A00 -
< > ¢ Conder] swiimled
Lo >/
- 2
1.1 m R
o)
Lo —> 1 o — 1
Coakrl‘ el
Sl or , —1-
}
< = —2om
4 R0 =

December 1, 2006

©2006 Craig Zilles 18

Atomic operations

= You can show that if the sequence is particularly nasty, the final value of
counter may be as little as 2, instead of 200000000.

= To fix this, we must do the load-add-store in a single step

— We call this an atomic operation

— We’re saying: “Do this, and don’t allow other processors to
interleave memory accesses while doing this.”

= “Atomic” in this context means “as if it were a single operation”

— either we succeed in completing the operation with no interruptions
or we fail to even begin the operation (because someone else was
doing an atomic operation)

— Furthermore, it should be “isolated” from other threads.

= x86 provides a “lock” prefix that tells the hardware:
“don’t let anyone read/write the value until I’m done with it”
— Not the default case (because it is slower!)

December 1, 2006 ©2006 Craig Zilles 19

What if we want to generalize beyond increments?

» The lock prefix only works for individual x86 instructions.

= What if we want to execute an arbitrary region of code without
interference?

— Consider a red-black tree used by multiple threads.

December 1, 2006 ©2006 Craig Zilles 20

What if we want to generalize beyond increments?

= The lock prefix only works for individual x86 instructions.

= What if we want to execute an arbitrary region of code without
interference?

— Consider a red-black tree used by multiple threads.

= Best mainstream solution: Locks
— Implements mutual exclusion
e You can’t have it if | have it, | can’t have it if you have it

acquire lock

critical
section

release lock

December 1, 2006 ©2006 Craig Zilles

What if we want to generalize beyond increments?

= The lock prefix only works for individual x86 instructions.

= What if we want to execute an arbitrary region of code without
interference?

— Consider a red-black tree used by multiple threads.

= Best mainstream solution: Locks
— Implement “mutual exclusion”
e You can’t have it if | have, | can’t have it if you have it

acquielock when lock = 0, set lock = 1, continue

critical
section

release lock lock =0

December 1, 2006 ©2006 Craig Zilles

Lock acquire code

High-level version MIPS version

unsigned lock = 0; 7lock

while (1) { spin: 1w $t0, 0($a0)
if (lock == 0) { bne $t0, 0, spin
lock = 1; 1i $tl, 1
break; sw $tl, 0($a0)

= What problem do you see with this?

December 1, 2006 ©2006 Craig Zilles 23

’ac £k oo l
Race condition in lock-acquire

- . 2.
spin: 1w $t0, 0($a0) ’Qﬁ l“ ,‘,{p DC"") ...,¢
bne $t0, 0, spin b /
1i $t1, 1 l’.“’
sw $tl, 0(S$a0) s‘u 447 (ko)
¢

December 1, 2006 ©2006 Craig Zilles 24

Doing “lock acquire” atomically

= Make sure no one gets between load and store

= Common primitive: compare-and-swap (old, new, addr)
— If the value in memory matches “old”, write “new” into memory
" temp = *addr;
if (temp == old) {
"addr = new;
} else {

old = temp;

}
-

» x86 calls it CMPXCHG (compare-exchange)
— Use the lock prefix to guarantee it’s atomicity

December 1, 2006 ©2006 Craig Zilles

25

Using CAS to implement locks

= Acquiring the lock:
lock acquire:
$t0, 0 __# old
11 stl, 1 __# new
CES St0, Stl, lock
St otl, lock acquire # failed, try again

= Releasing the lock:
sw S0, lock

December 1, 2006 ©2006 Craig Zilles 26

Conclusions

= When parallel threads access the same data, potential for data races
— Even true on uniprocessors due to context switching N
= We can prevent data races by enforcing mutual exclusion
— Allowing only one thread to access the data at a time
— For the duration of a critical section
= Mutual exclusion can be enforced by locks
— Programmer allocates a variable to “protect” shared data
— Program must perform: 0 — 1 transition before data access
— 1 — 0 transition after
= Locks can be implemented with atomic operations
— (hardware instructions that enforce mutual exclusion on 1 data item)
— compare-and-swap
"« If address holds “old”, replace with “new”

December 1, 2006 ©2006 Craig Zilles 27

