Performance Optimization, cont.

3. Analyze Data
1. Create a 2. Collect and Identity

Benchmark Data Performance

Problems

5. IS
Problem 4. Fix the

Fixed? problems In your
code or system

6. Are
performance
requirements

April 29, 2009 Single-Instruction Multiple Data (SIMD)

How do we fix
performance
problems?

How do we improve performance?

= Imagine you want to build a house. How long would it take you?
Si o ’no us<
Bl i

-..."";A«L

= What could you do to build that house faster? L p royrem

More workeess valelise
sp:ﬂv- L»@/S;p"v hose- -’[’qu ot {otwe
befer wovhes fuore e edd o
m—&,‘?‘fa‘- r"b pfe»"""‘r"‘k-

’&f h-ﬂjtk'lé bauu a“]M"\'\\'é

April 29, 2009 ISA’'s, Compilers, and Assembly 2

Exploiting Parallelism

= Of the computing problems for which performance is important, many
have inherent parallelism.

= E.g., computer games:
— graphics, physics, sound, A.l. etc. can be done separately
— Furthermore, there is often parallelism within each of these:
e Each pixel on the screen’s color can be computed independently
» Non-contacting objects can be updated/simulated independently
 Artificial intelligence of non-human entities done independently

= E.g., Google queries:

— Every query is independent
» Google searches are read-only!!

April 29, 2009 Single-Instruction Multiple Data (SIMD)

Exploiting Parallelism at the Instruction level (SIMD)

= Consider adding together two arrays:

void
array add(int A[], int B[], int C[], 1nt length) {
int 1i;
for (i = 0 ; 1 < length ; ++ 1) {
Cli] = AlL] + BIi);

= You could write assembly for this, something like:

1w $t0, 0(sa0)
1w stl, 0(sal)
add st0, Stl, $t2

SW st2, 0(Sa2)

(plus all of the address arithmetic, plus the loop control)

April 29, 2009 Single-Instruction Multiple Data (SIMD)

'S

Exploiting Parallelism at the Instruction level (SIMD)

= Consider adding together two arrays:

void
array add(int A[], int B[], int C[], 1nt length) {
int 1i;
for (i = 0 ; 1 < length ; ++ 1) {
C[i] = A[i] + Bl[i];

}

Operating on one element at a time

April 29, 2009 Single-Instruction Multiple Data (SIMD)

Exploiting Parallelism at the Instruction level (SIMD)

= Consider adding together two arrays:

void
array add(int A[], int B[], int C[], 1nt length) {
int 1i;
for (i = 0 ; 1 < length ; ++ 1) {
C[i] = A[i] + Bl[i];

}

Operating on one element at a time

i

April 29, 2009 Single-Instruction Multiple Data (SIMD)

Exploiting Parallelism at the Instruction level (SIMD)

= Consider adding together two arrays:

void
array add(int A[], int B[], int C[], 1nt length) {
int 1i;
for (i = 0 ; 1 < length ; ++ 1) {
C[i] = A[i] + Bl[i];

Operate on MULTIPLE elements

Single Instruction,
Multiple Data (SIMD)

April 29, 2009 Single-Instruction Multiple Data (SIMD)

Intel SSE/SSE2 as an example of SIMD

 Added new 128 bit registers (XMMQ - XMM7), each can store

|

— 4 single precision FP values (SSE) _4*32b
— 2 double precision FP values (SSE2) 2 * 64b
— 16 byte values (S5E2) 16 * 8b
— 8 word values (SSE2) 8*16b
— 4 double word values (SSE2)
— 1 128-bit integer value (SSE2) 1*128b
4.0 (32 4.0 (32 3.5 (32
bits) bits) bits)
> —1.5 (32 bits) 2.0 (32 1.7 (32
bits) bits)
2.5 (32 bits) 6.0 (32 5.2 (32
bits) bits)

April 29, 2009

Single-Instruction Multiple Data (SIMD)

4* 32b

-2.0 (32
bits)
2.3 (32
bits)
0.3 (32
bits)

SIMD Extensions

X1 (SP) X2 (SP) X3 (SP) X4 (SP)

Y1 (?P) Y2 (SP) Y3|(SP) Y4 (SP)
OO CO N CD

XlopYI(SP)| X20p Y2(SP)| X3 0p Y3(SP)| X4o0p Y4(SP)

Packed Operations

More than 70 1nstructions. Arithmetic Operations supported:
Addition, Subtraction, Mult, Division, Square Root, Maximum,
Minimum. Can operate on Floating point or Integer data.

April 29, 2009 Single-Instruction Multiple Data (SIMD)

Annotated SSE code for summing an array

mov = data movement
dq = double-quad (128b)

A 4

movdga (%eak,% , Sxmm0

;_n_o_vcic_@_ %$ebx, %edx,4), $%$xmml

paddd xmm0, Zxmml

movdga %x_le}, I%ecx,%edxi4)
Lada1 $4, %edx B

(loop conXrol code)

_p = packed S51mo
add = add

e

T = aligned / A + 4%

%eax = A
%ebx = B
%ecx = C
%edx =i

load A[i] to A[i+3]
load B[i] to B[i+3]
CCCC = AAAA + BBBB
store C[i] to C[i+3]
1 += 4

d = double (i.e., 32-bit integer)

April 29, 2009

Single-Instruction Multiple Data (SIMD)

10

Wit 111IA

(1§

TN ,

j Wisuili
A -I'L :
sq'\-wﬂa“ 4 Aan mefic
April 29, 2009 Single-Instruction Multiple Data (SIMD) 11

Is it always that easy?

= No. Not always. Let’s look at a little more challenging one.

unsigned

sum array (unsigned *array, 1int length) {
int total = 0;

for (int 1 = 0 ; 1 < length ; ++ 1) {

total += arrayl[i];
~
}

return total;

» |s there parallelism here?

April 29, 2009 Single-Instruction Multiple Data (SIMD) 12

Exposing the parallelism

unsigned

sum array (unsigned *array, 1int length) {

int totaﬁj 0;

t=Y
for (int 1 = 0 ; 1 < length ;oomt—) |

totalU-F— array |
8 th1 L) 4+= armiy(.+z'5 y

o bl T -+ = array [£2];
h&ICO T4 af/")' Cr+3J,;

3

return total;

April 29, 2009 Single-Instruction Multiple Data (SIMD)

13

/

We first need to restructure the code

unsigned
sum arrayZ (unsigned *array, 1nt leng;b) {
unsigned total, 1i;

} A

Total = temp[0] + temp[l] + temp[2] + temp[3];

for (; 1 < length ; ++ 1) {
total += arrayl([i];
}

return total;

April 29, 2009 Single-Instruction Multiple Data (SIMD)

_unsigned tempf4] = {0, 0, 0, O}; — .
for (1 = 0 ; 1 < length & ~0x3 ; 1 += 4) { slmp‘%
temp[0] += array[i];
temp[l] += arrayl[i+1l];
temp[2] += arrayl[1i+2];
temp[3] += array[i+3];

14

Then we can write SIMD code for the hot part

unsigned
sum arrayZ (unsigned *array, int length) {
unsigned total, 1i;
unsigned temp[4] = {0, 0, 0, 0};
for (1 =0 ; i < length & ~0x3 ; i += 4) {
temp[0] += array[i];
temp[l] += array[i+l];
temp[2] += array[i+2];
temp[3] += array[i+3];
}
total = temp[0] + temp[l] + temp[2] + temp[3];
for (; 1 < length ; ++ 1) {
total += arrayl([i];

}

return total;

April 29, 2009 Single-Instruction Multiple Data (SIMD)

Summary

Performance is of primary concern in some applications
— Games, servers, mobile devices, super computers

Many important applications have parallelism
— Exploiting it is a good way to speed up programs.

Single Instruction Multiple Data (SIMD) does this at ISA level
— Registers hold multiple data items, instruction operate on them
— Can achieve factor or 2, 4, 8 speedups on kernels
L O
— May require some restructuring of code to expose parallelism]

April 29, 2009 Single-Instruction Multiple Data (SIMD)

16

