
April 29, 2009 Single-Instruction Multiple Data (SIMD) 1

Performance Optimization, cont.

How do we fix
performance
problems?

April 29, 2009 ISA's, Compilers, and Assembly 2

How do we improve performance?

  Imagine you want to build a house. How long would it take you?

  What could you do to build that house faster?

April 29, 2009 Single-Instruction Multiple Data (SIMD) 3

Exploiting Parallelism

  Of the computing problems for which performance is important, many
have inherent parallelism.

  E.g., computer games:
—  graphics, physics, sound, A.I. etc. can be done separately
—  Furthermore, there is often parallelism within each of these:

•  Each pixel on the screen’s color can be computed independently
•  Non-contacting objects can be updated/simulated independently
•  Artificial intelligence of non-human entities done independently

  E.g., Google queries:
—  Every query is independent

•  Google searches are read-only!!

April 29, 2009 Single-Instruction Multiple Data (SIMD) 4

Exploiting Parallelism at the Instruction level (SIMD)

  Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {
 int i;
 for (i = 0 ; i < length ; ++ i) {
 C[i] = A[i] + B[i];

 }
}

  You could write assembly for this, something like:

lw $t0, 0($a0)

lw $t1, 0($a1)

add $t0, $t1, $t2

sw $t2, 0($a2)
(plus all of the address arithmetic, plus the loop control)

April 29, 2009 Single-Instruction Multiple Data (SIMD) 5

Exploiting Parallelism at the Instruction level (SIMD)

  Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {
 int i;
 for (i = 0 ; i < length ; ++ i) {
 C[i] = A[i] + B[i];

 }
}

+

Operating on one element at a time

April 29, 2009 Single-Instruction Multiple Data (SIMD) 6

Exploiting Parallelism at the Instruction level (SIMD)

  Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {
 int i;
 for (i = 0 ; i < length ; ++ i) {
 C[i] = A[i] + B[i];

 }
}

+

Operating on one element at a time

April 29, 2009 Single-Instruction Multiple Data (SIMD) 7

  Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {
 int i;
 for (i = 0 ; i < length ; ++ i) {
 C[i] = A[i] + B[i];

 }
}

+

Exploiting Parallelism at the Instruction level (SIMD)

+

Operate on MULTIPLE elements

+ + Single Instruction,
Multiple Data (SIMD)

April 29, 2009 Single-Instruction Multiple Data (SIMD) 8

Intel SSE/SSE2 as an example of SIMD

•  Added new 128 bit registers (XMM0 – XMM7), each can store
—  4 single precision FP values (SSE) 4 * 32b
—  2 double precision FP values (SSE2) 2 * 64b
—  16 byte values (SSE2) 16 * 8b
—  8 word values (SSE2) 8 * 16b
—  4 double word values (SSE2) 4 * 32b
—  1 128-bit integer value (SSE2) 1 * 128b

 4.0 (32
bits)

+

 4.0 (32
bits)

 3.5 (32
bits)

 -2.0 (32
bits)

 2.3 (32
bits)

 1.7 (32
bits)

 2.0 (32
bits)

-1.5 (32 bits)

 0.3 (32
bits)

 5.2 (32
bits)

 6.0 (32
bits)

2.5 (32 bits)

April 29, 2009 Single-Instruction Multiple Data (SIMD) 9

SIMD Extensions

More than 70 instructions. Arithmetic Operations supported:
Addition, Subtraction, Mult, Division, Square Root, Maximum,
Minimum. Can operate on Floating point or Integer data.

April 29, 2009 Single-Instruction Multiple Data (SIMD) 10

Annotated SSE code for summing an array

movdqa (%eax,%edx,4), %xmm0 # load A[i] to A[i+3]

movdqa (%ebx,%edx,4), %xmm1 # load B[i] to B[i+3]

paddd %xmm0, %xmm1 # CCCC = AAAA + BBBB

movdqa %xmm1, (%ecx,%edx,4) # store C[i] to C[i+3]
addl $4, %edx # i += 4

(loop control code)

mov = data movement
dq = double-quad (128b)

a = aligned

%eax = A
%ebx = B
%ecx = C
%edx = i

A + 4*i

p = packed
add = add

d = double (i.e., 32-bit integer) why?

April 29, 2009 Single-Instruction Multiple Data (SIMD) 11

April 29, 2009 Single-Instruction Multiple Data (SIMD) 12

Is it always that easy?

  No. Not always. Let’s look at a little more challenging one.

unsigned

sum_array(unsigned *array, int length) {
 int total = 0;

 for (int i = 0 ; i < length ; ++ i) {

 total += array[i];

 }

 return total;
}

  Is there parallelism here?

April 29, 2009 Single-Instruction Multiple Data (SIMD) 13

Exposing the parallelism

unsigned

sum_array(unsigned *array, int length) {

 int total = 0;

 for (int i = 0 ; i < length ; ++ i) {

 total += array[i];
 }

 return total;
}

April 29, 2009 Single-Instruction Multiple Data (SIMD) 14

We first need to restructure the code

unsigned
sum_array2(unsigned *array, int length) {
 unsigned total, i;
 unsigned temp[4] = {0, 0, 0, 0};
 for (i = 0 ; i < length & ~0x3 ; i += 4) {
 temp[0] += array[i];
 temp[1] += array[i+1];
 temp[2] += array[i+2];
 temp[3] += array[i+3];
 }
 total = temp[0] + temp[1] + temp[2] + temp[3];
 for (; i < length ; ++ i) {
 total += array[i];
 }
 return total;
}

April 29, 2009 Single-Instruction Multiple Data (SIMD) 15

Then we can write SIMD code for the hot part

unsigned
sum_array2(unsigned *array, int length) {
 unsigned total, i;
 unsigned temp[4] = {0, 0, 0, 0};
 for (i = 0 ; i < length & ~0x3 ; i += 4) {
 temp[0] += array[i];
 temp[1] += array[i+1];
 temp[2] += array[i+2];
 temp[3] += array[i+3];
 }
 total = temp[0] + temp[1] + temp[2] + temp[3];
 for (; i < length ; ++ i) {
 total += array[i];
 }
 return total;
}

April 29, 2009 Single-Instruction Multiple Data (SIMD) 16

Summary

  Performance is of primary concern in some applications
—  Games, servers, mobile devices, super computers

  Many important applications have parallelism
— Exploiting it is a good way to speed up programs.

  Single Instruction Multiple Data (SIMD) does this at ISA level
— Registers hold multiple data items, instruction operate on them
— Can achieve factor or 2, 4, 8 speedups on kernels
— May require some restructuring of code to expose parallelism

