WELCOME TO

A job ad at a game programming company
~~DOG
NAUGHTY
®
Assembler Programmer

Assembly programming alas is all too often considered a dying art form; however, this is definitely not the
case at Naughty Dog We take assembly programming VERY seriously and use assembly extensively
in our games. We're looking for someone who really enjoys getting down to the metal and writing highly
optimized assembler code. This person should have a very solid grasp on caching issues, processor
pipelining, and latencies. Strong 3D math skills are a big plus, and good fundamental 30 math skills are
required. Past experience writing 3D renderers is a big plus. We're not looking for the occasional down

coder, we're looking for someone passionate about assembly, and only people with extensive past
assembly experience will be considered.

April 29, 2009 ISA’'s, Compilers, and Assembly 1

Assembly Programming

= Why do they take assembly programming “very seriously”?

April 29, 2009 ISA’'s, Compilers, and Assembly

Assembly Programming

= Why do they take assembly programming “very seriously”?
— Compilers don’t always generate the best possible code
— Especially for computationally-intensive code
« Like graphics, signal processing, physical simulation, etc.

— An assembly programmer can use application/domain knowledge
e Knowledge that some variables won’t change during computation
e Knowledge of what precision is required
e Knowledge that operations can be reordered/pipelined

— There is often not a good mapping from C to some ISA features
— Good programmers are more creative than compilers (holistic)

= Generally only works for “small” pieces of code
— Humans are easily overwhelmed (our caches thrash)

April 29, 2009 ISA’'s, Compilers, and Assembly

RISC vs. CISC

= SPARC, PowerPC, and ARM are all very similar to MIPS, so you should have
no problem learning them on your own, if needed.

= Today, we’ll look at x86, which has some significant differences of which
you should be aware.

April 29, 2009 ISA’'s, Compilers, and Assembly 4

RISC vs. CISC

= SPARC, PowerPC, and ARM are all very similar to MIPS, so you should have
no problem learning them on your own, if needed.

= Today, we’ll look at x86, which has some significant differences of which
you should be aware.

April 29, 2009 ISA’'s, Compilers, and Assembly 5

Comparing x86 and MIPS

= Much more is similar than different.

Both use registers and have byte-addressable memories
Same basic types of instructions (arithmetic, branches, memory)

= Differences %eax LY =16 nah"v-

-_— —

Fewer (8) registers, different names

Two register formats (x86) vs. three (MIPS)

Greater reliance on the stack, which is part of the architecture
x86 arithmetic supports (register + memory) -> (register) format
x86 has additional addressing modes

x86 branches use condition codes

different instruction names and variable-length encodings

= ’ll walk you through the tricky parts

April 29, 2009 ISA’'s, Compilers, and Assembly 6

R AR

x86 Registers A¥
\ Adl AL‘
= Few, and special purpose %4ax l
— 8 integer registers % edx

— two generally used only for stack

. . . secx
— Not all instructions can use any register

%$ebx

= Little room for temporary values $esi
— X86 uses “two-address code”

— OpX,y # Yy=YyopX

$edi

= Rarely can the compiler fit everything in
registers

— Stack is used much more heavily

7

April 29, 2009 ISA’'s, Compilers, and Assembly

x86 Stack is Architected! (Not just a convention)

= The esp register _is_ the stack pointer

= x86 includes explicit push and pop instructions
— push %eax # MIESP - 4] = EAX; ESP = ESP - 4
— pop %ecx # ESP = E_S_I3+_4 ECX = M[ESP - 4]
— [t can be seen that, like MIPS, the x86 stack grows down

= call instructions (x86 equivalent to jal) push the return address on stack
— call label # Eush next EIP; EIP = label (EIP = instruction pointer)

= Stack also used for passing arguments, pl:ahed in rsekf je order C
L “
£ (ﬂ, b, e..) pst (e P ‘ a
= Because esp is constantly changmg, use ebp as stack “base pointe
— Keeps track of the_top of the current stack frame qu)

« Same as the bottom of the previous stack frame,(,
— Doesn’t move, so can be used throughout the function

= =
April 29, 2009 ISA’'s, Compilers, and Assembly sVL’ 8

A Simple Example

int main() {

int one = 123, two = 456;
swap (&one, &two) ;

Gﬁﬂkﬂk%S%—j—kur‘4%3———

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = to;

April 29, 2009 ISA’'s, Compilers, and Assembly

A Simple Example

int main() {
int one = 123, two = 456;
swap (&one, &two) ;

0x124

0x120
O0xllc <~ %ebp,esp

} 0x118
0x114

subl S8, %esp 0x110

movl $123, -8(%ebp) 0%10

movl $456, -4 (%ebp) xive

leal -4 (%ebp) , %eax

pushl %eax Key:

leal -8 (%ebp) , %eax sub = subtract

pushl Seax l = long (32-bit operation)

call swap S8 = literal 8
%esp = stack pointer register
ESP =ESP - 8

April 29, 2009 ISA’'s, Compilers, and Assembly 10

A Simple Example

int main() {
int one = 123, two = 456;

swap (&one, &two) ;
}
subl $8, %esp
movl $123, -8 (%ebp)
movl $456, -4 (%ebp)
leal -4 (%ebp) , %eax
pushl Teax
leal -8 (%ebp) , %eax
pushl Teax
call swap

April 29, 2009

0x124
0x120
Oxllc < 3%ebp
0x118
123 0x114 © €SP

0x110
0x10c

Key:

mov = data movement

l = long (32-bit operation)

$123 = literal 123

-8(%ebp) = base + offset addressing
M[EBP - 8] = 123

ISA’'s, Compilers, and Assembly 11

A Simple Example

int main() { 0x124
int one = 123, two = 456; 0x120
swap (&one, &two) ;

o Ox1llc < %ebp
} “YSé | ox11s

123 | ox114 © €SP

subl $8, %esp 0x110
movl $123, -8 (%ebp)

movl $456, -4 (%ebp) 0x10c
leal -4 (%ebp) , %eax

pushl Teax

leal -8 (%ebp) , %eax

pushl Teax

call swap

April 29, 2009 ISA’'s, Compilers, and Assembly 12

A Simple Example

int main() {
int one = 123, two = 456;
swap (&one, &two) ;

}

subl $8, %esp

movl $123, -8 (%ebp)

movl $456, -4 (%ebp)
leal -4 (%ebp) , %eax
pushl seax

leal -8 (%ebp) , %eax
pushl Teax

call swap

April 29, 2009

0x124
0x120
0xllc ——%ebp
456 oOx118.
123 | ox114 " (teSP
18 | otz0 4
0x10c
Key:
(push arguments in reverse order)
lea = load effective address

(don’t do a load, just compute addr.)
EAX = EBP - 4

M[ESP - 4] = EAX

ESP = ESP - 4

ISA’'s, Compilers, and Assembly 13

A Simple Example

int main() {
int one = 123, two = 456;
swap (&one, &two) ;

subl
movl
movl
leal
pushl
leal
pushl
call

April 29, 2009

$8, %esp

$123, -8 (%ebp)
$456, -4 (%ebp)
-4 (%ebp) , %eax

$eax
-8 (%ebp) , %eax
$eax

swap

456

123

0x118

Ov1I4

ISA’'s, Compilers, and Assembly

0x124
0x120
Oxllc ——%ebp
0x118
0x114

0x1103 cesp
O0x10c

14

A Simple Example

int main() {
int one = 123, two = 456;
swap (&one, &two) ;

subl $8, %esp

0x124
0x120
Oxllc ~——%ebp
456 0x118
123 0x114

0x118 0x110
1 123, -8 (%eb o
mov $ (P)° 0x114 | gx10c sesp
movl $456, -4 (%ebp)
leal -4 (%ebp) , %eax eyt €7 | ox108
pushl Teax
leal -8 (%ebp) , %eax 0x104
pushl %eax Key:
call swap M[ESP - 4] = next_EIP
ESP = ESP - 4
EIP = swap
April 29, 2009 ISA’'s, Compilers, and Assembly 15

A Simple Example

int main() {

int one = 123, two = 456;

swap (&one,

&two) ;

subl $8, %esp

movl $123,
movl
leal
pushl Teax
leal
pushl Teax
call

April 29, 2009

-8 (%ebp)
$456, -4 (%ebp)
-4 (%ebp) , %eax

-8 (%ebp) , %eax

swap

456

123

0x118

O0x114

RTN ADR

ISA’'s, Compilers, and Assembly

0x124

0x120
Ox1llc
0x118
0x114
0x110
0x10c
0x108
0x104

+—%ebp

+«— %esp

16

The “swap” function

swap:
pushl %ebp
movl %esp, 3ebp }* Set
pushl %ebx Up
void swap (int *xp, int *yp)
{ movl 12 (%ebp),%ecx)
;nt t0 = *xp; movl 8 (%ebp) , %edx
int t1 = *yp; movl (%ecx), %eax
*xp = tl1; movl (%edx) , $ebx - Body
*yp = tO; movl %eax, (%edx)
} movl %ebx, (%ecx)
movl -4 (%ebp) , %$ebx’
movl %ebp, sesp . .
popl %ebp > Finish
ret ,

April 29, 2009 ISA’'s, Compilers, and Assembly 17

Function Prologue

void swap(int *xp, int *yp)
(0x124
int t0 = *xp; 0x120
int tl = *yp;)
*xp - &1 Qx]]C oebp
*yp = t0; 456 0x118
} 123 | 0x114
swap: 0x118 | ox110
pushl %ebp 0x114 [oxi10c
movl %Sesp, sebp RTN ADR sesp
pushl %ebx 0x108 S
O&”c 0x104

Save the old base pointer on the stack

April 29, 2009 ISA’'s, Compilers, and Assembly 18

Function Prologue

void swap (int *xp, int *yp)
{
int t0 = *xp;
int t1 = *yp;
*xXp = tl;
*yp = tO0; 456
} 123
swap: 0x118
pushl 3%ebp 0x114
movl %esp,%ebE RTN ADR
pushl %ebx
Ox11c

April 29, 2009

Old stack pointer becomes new base pointer.

ISA’'s, Compilers, and Assembly

0x124
0x120
Ox1llc
0x118
0x114
0x110
0x10c
0x108
0x104

s

— %esg%d’

19

Function Prologue

void swap (int *xp, int *yp)
(0x124
int t0 = *xp; 0x120
int t1 = *yp;
*xp = t1; Oxllc
*yp = t0; 456 | ox118
} 123 | 0x114
swap: 0x118 0x110
pushl %ebp 0x114 [gx10c
movl %Sesp, sebp
pushl %ebx RTNADR| ox108
+— %ebp 0P
0x11c | 1 104 eoP

VAWE 8> | 5x100 &~ Toesp

Save register ebx, which is callee saved.

April 29, 2009 ISA’'s, Compilers, and Assembly 20

Function Prologue

void swap (int *xp, int *yp)
(0x124
int t0 = *xp; 0x120
int t1 = *yp;
*xp = t1; Oxllc
*yp = t0; 456 | 0x118
} 123 | ox114
swap: 0x118 0x110
pushl %ebp 0x114 [gx10c
movl %esp, 3ebp RTN ADR
pushl %ebx OX108¢__9 b
0x11c | 1 104 e
0x100 — ¥©SP

Save register ebx, which is callee saved.

April 29, 2009 ISA’'s, Compilers, and Assembly 21

The swap itself

void swap (int , int

{ it B = o Register Variable

int tl1l = *yp; secx P

*xp = tl1; sedx Xp

*yp = tO0; %eax tl
} %ebx t0
movl 12 (%ebp) , %ecx # ecx = yp
movl 8 (%ebp) , $edx # edx = xp
movl (%ecx),b %eax # eax = *yp (tl)
movl (%$edx) ,b $ebx # ebx = *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %ebx, (%$ecx) # *yp = ebx

April 29, 2009 ISA’'s, Compilers, and Assembly

456 0x118
123 0x114
Ox118 | 0x110
0x114 .| o0x10c *—
RTNADR| 4,108 *—
0x11c | g 104 PP
0x100 — °©SP
seax
$edx %vll‘i
Secx| 0x118
S$ebx
22

The swap itself

void swap (int *xp, int *yp)
{ _ Register Variable 27 oIS
int t0 = *xp; | 123 0x114
int t1 = *yp; secx YP 0x118 0x110
*xp = tl1; sedx Xp
*yp = tO0; Seax tl 0x114 [oxio0c
} %$ebx t0 RTN ADR| 4,103
0x11c | g 104 PP
movl 12 (%ebp), %$ecx # ecx = yp 0x100 *©5P
movl 8 (%ebp) , %edx # edx = xp
movl (%ecx), %$eax # eax = *yp (tl) seax
movl (%$edx) ,b $ebx # ebx = *xp (t0) sedx| 0x114
movl %eax, (%edx) # *xp = eax R
movl %ebx, (3ecx) # *yp = ebx secx| Ox11%
sebx

April 29, 2009 ISA’'s, Compilers, and Assembly 23

The swap itself

void swap (int *xp, int *yp)

{ e 5 o ey Register Variable

int t1 = *yp; |%€cX ¥P

*xp = tl1; sedx Xp

*yp = tO0; %eax tl
} %ebx t0

movl 12 (%$ebp) , $ecx # ecx = yp

movl 8 (%ebp) , $edx # edx = xp

movl (%ecx), %$eax # eax = *yp (tl)
movl (%$edx) ,b $ebx # ebx = *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %ebx, (%$ecx) # *yp = ebx

April 29, 2009 ISA’'s, Compilers, and Assembly

A56_ | 0x118
123 0x114
0x118 0x110
0x114 0x10c
RTN ADR| ,,10s
0x11c | g 104 PP
0x100 ~ €SP
seax 456
%edx| 0x114
%ecx| 0x118
sebx
24

The swap itself

void swap (int *xp, int *yp)
{ _ Register Variable 27 oIS
int t0 = *xp; . ‘5" _lﬂ. 0x114
int t1 = *yp; secx YP 0x118 0x110
*xp = tl1; sedx Xp
*yp = tO0; Seax tl 0x114 [oxio0c
} $ebx t0 RTN ADR| 4,408
0x11c | g 104 PP
movl 12 (%ebp), %$ecx # ecx = yp 0x100 *©5P
movl 8 (%ebp) , $edx # edx = xp
movl (%ecx),b %eax # eax = *yp (tl) seax 456
movl (%edx) ,b $ebx # ebx = *xp (t0) sedx| 0x114
movl %eax, (%edx) # *xp = eax R
movl %ebx, (3ecx) # *yp = ebx secx| Ox11%
%ebx 123

April 29, 2009 ISA’'s, Compilers, and Assembly 25

The swap itself

void swap (int *xp, int *yp)

{

_ Register Variable

int t0 = *xp;

int t1 = *yp; secx YP

*xp = tl; $edx Xp

*yp = t0; %eax tl
%ebx t0

movl 12 (%ebp) ,%ecx
movl 8 (%ebp) , $edx
movl (%ecx), %$eax
movl (%edx), %$ebx
movl %eax, (%$edx)

movl %ebx, (%$ecx)

April 29, 2009

ecx = yp

edx = xp

eax = *yp (tl)
ebx = *xp (t0)
*xp = eax

*yp = ebx

ISA’'s, Compilers, and Assembly

456 0x118
456 0x114
0x118 | gx110
0x114 0x10c
RTN ADR| ,.10g
0x11c | g 104 PP
0x100 ~ €SP
%eax 456
%$edx| 0x114
%$ecx| 0x118
%ebx 123
26

The swap itself

void swap (int *xp, int *yp)

{

_ Register Variable

int t0 = *xp;

int t1 = *yp; secx YP

*xp = tl; $edx Xp

*yp = tO; %eax t1
%ebx t0

movl 12 (%ebp) ,%ecx
movl 8 (%ebp) , $edx
movl (%ecx), %$eax
movl (%edx), %$ebx
movl %eax, (%$edx)

movl %ebx, (%$ecx)

April 29, 2009

ecx = yp

edx = xp

eax = *yp (tl)
ebx = *xp (t0)
*xp = eax

*yp = ebx

ISA’'s, Compilers, and Assembly

123 0x118
456 0x114
0x118 0x110
0x114 0x10c
RTN ADR| 108
0x11c | g 104 PP
0x100 ~ €SP
seax 456
%edx| 0x114
%ecx| 0x118
sebx 123
27

Function Epilogue

void swap (int *xp, int *yp)

(0x124
int t0 = *xp; 0x120
int t1 = *yp;

*xp = t1; Oxllc
*yp = t0; 123 | 0x118
} 456 | 0x114

0x118 0x110

movl -4 (%ebp) , %$ebx 0x114 | gx10c

movl %ebp, Sesp
4 RTN ADR
popl S%ebp 0x108

+— %ebp
ret Ox11c | 54104
| 0x100 T %esP

Restore register ebx.

April 29, 2009 ISA’'s, Compilers, and Assembly 28

Function Epilogue

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = to;

movl -4 (%ebp) , $ebx
movl %ebp, Sesp
popl S%ebp

ret

Copy the base pointer to the stack pointer.

123

456

0x118

O0x114

RTN ADR

Ox11c

April 29, 2009 ISA’'s, Compilers, and Assembly

29

Function Epilogue

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = to;

123

movl -4 (%ebp) , $ebx
movl %ebp, Sesp
popl Sebp

ret

Restore the old base pointer.

456

0x118

O0x114

RTN ADR

Ox11c

- &=

April 29, 2009 ISA’'s, Compilers, and Assembly

0x124
0x120
0x11c< %ebp
0x118
0x114
0x110
0x10c
0x108
— , €sp
0x104
0x100

30

Function Epilogue

void swap (int *xp, int *yp)

{ 0x124
int t0 = *xp; 0x120
int t1 = *yp; 2
«— %eb
Ny Oxllc P
*yp = t0; 123 0x118
} 456 0x114
0x118 0x110
movl -4 (%ebp) ,%ebx 0x114 [gx10c : ,
movl %ebp, Sesp o
RTN ADR 0x108 sesp

popl S%ebp
ret Ox11c 0x104

0x100

Return, which pops the return address off the stack

April 29, 2009 ISA’'s, Compilers, and Assembly 31

Memory Operands

= Most instructions (not just mov) can include a memory operand
—addl -8(%ebp), %eax, # EAX =EAX + M[EBP - 8]
—incl -8(%ebp) # M[EBP - 8] = M[EBP - 8] + 1

= More complex addressing modes are supported
— general form: _D(Rb,Ri,S) # Mem[Reg[Rb]+5*Reg[Ri]+ D]

eD: Constant “displacement” 1, 2, or 4 bytes
«Rb: Base register: Any of 8 integer registers
e Ri: Index register: Any, except for $esp
» Unlikely you’d use %ebp, either
oS: - __Scale: 1,2,4,0r8

— Useful for accessing arrays of scalars (including those within structs)

April 29, 2009 ISA’'s, Compilers, and Assembly 32

Address Computation Examples

%sedx| 0x£000

%ecx| 0x100
Expression Computation Address
O0x8 (%edx) Oxf000 + 0Ox8 Oxf008
(sedx, secx) 0xf000 + 0x100 0x£f100
(sedx, 5ecx, 4) 0xf000 + 4*0x100 0x£f400
0x80 (, sedx, 2) 2*0xf000 + 0x80 0x1e080

April 29, 2009

ISA’'s, Compilers, and Assembly

33

Control Flow = Condition Codes

= Conditional control flow is a two step process: 240
— Setting a condition code (held in the EFLAGS register) L |

« done by most arithmetic operations

— Branching based on a condition code bit

= Standard sequence involves using the compare (cmp) instruction aﬁ
— Compare acts like a subtract, but doesn’t write dest. register

fcmp 8(%ebx), %eax # set flags based on (EAX - M[EBX + 8])
jg branch_target # taken if (EAX > M[EBX + 8])

April 29, 2009 ISA’'s, Compilers, and Assembly 34

April 29, 2009

Control Flow Example

int sum(int n) {
int i, sum = 0;
for (1 =1 ; 1 <=n
sum += 1i;
}

return sum;

ISA’'s, Compilers, and Assembly

.
14

++ i) {

35

sum: pushl
movl
movl
movl
xdil
cmpl
Jg
.L6:
addl
incl
cmpl
jle
.L8:
April 29, 2009

Control Flow Example

int sum(int n) {

int i, sum = 0;
for (1 =1 ; 1 <=n
sum += 1;

}

return sum;

sebp }
sesp, %ebp
8 (%ebp), %ecx # n (was argument)
$1, %edx #i=1
%eax, %eax # sum = 0
%ecx, %edx # (i ? n), sets cond.
.L8 # branch if (i > n)
%sedx, %eax # sum += i
%edx #i+=1
%ecx, %edx # (i ? n)
.L6 # branch if (i <= n)

ISA’'s, Compilers, and Assembly

; ++ 1) |

codes

36

Variable Length Instructions

08048344 <sum>:

8048344: 55 push sebp

8048345: 89 eb mov sesp, sebp
8048347 : 8b 4d 08 mov 0x8 (sebp) , secx
804834a: ba 01 00 00 00 mov $Ox1,§§g§
804834f: 31 cO0 XOr seax, seax
8048351: 39 ca cmp secx, sedx
8048353 7f Oa Jg 804835f
8048355 8d 76 00 lea 0x0 (%esi) , %esi
804835f: c9 leave

8048360: c3 ret

= |nstructions range in size from 1 to 17 bytes
— Commonly used instructions are short (think compression)
e In general, x86 has smaller code than MIPS
= Many different instruction formats, plus pre-fixes, post-fixes
— Harder to decode for the machine (more on this later)

April 29, 2009 ISA’'s, Compilers, and Assembly 37

Why did Intel win?

x86 won because it was the first 16-bit chip by two years.
= |BM put it in PCs because there was no competing choice
= Rest is inertia and “financial feedback”
— x86 is most difficult ISA to implement for high performance, but
r’— Because Intel sells the most processors ...
— It has the most money ...
— Which it uses to hire more and better engineers ...
\‘ — Which is uses to maintain competitive performance ...

— And given equal performance, compatibility wins ...
— So Intel sells the most processors.

April 29, 2009 ISA’'s, Compilers, and Assembly

