
April 29, 2009 ISA's, Compilers, and Assembly 1

A job ad at a game programming company

April 29, 2009 ISA's, Compilers, and Assembly 2

Assembly Programming

  Why do they take assembly programming “very seriously”?

April 29, 2009 ISA's, Compilers, and Assembly 3

Assembly Programming

  Why do they take assembly programming “very seriously”?
—  Compilers don’t always generate the best possible code
—  Especially for computationally-intensive code

•  Like graphics, signal processing, physical simulation, etc.

—  An assembly programmer can use application/domain knowledge
•  Knowledge that some variables won’t change during computation
•  Knowledge of what precision is required
•  Knowledge that operations can be reordered/pipelined

—  There is often not a good mapping from C to some ISA features
—  Good programmers are more creative than compilers (holistic)

  Generally only works for “small” pieces of code
—  Humans are easily overwhelmed (our caches thrash)

April 29, 2009 ISA's, Compilers, and Assembly 4

RISC vs. CISC

  SPARC, PowerPC, and ARM are all very similar to MIPS, so you should have
no problem learning them on your own, if needed.

  Today, we’ll look at x86, which has some significant differences of which
you should be aware.

April 29, 2009 ISA's, Compilers, and Assembly 5

RISC vs. CISC

  SPARC, PowerPC, and ARM are all very similar to MIPS, so you should have
no problem learning them on your own, if needed.

  Today, we’ll look at x86, which has some significant differences of which
you should be aware.

April 29, 2009 ISA's, Compilers, and Assembly 6

Comparing x86 and MIPS

  Much more is similar than different.
—  Both use registers and have byte-addressable memories
—  Same basic types of instructions (arithmetic, branches, memory)

  Differences
—  Fewer (8) registers, different names
—  Two register formats (x86) vs. three (MIPS)
—  Greater reliance on the stack, which is part of the architecture
—  x86 arithmetic supports (register + memory) -> (register) format
—  x86 has additional addressing modes
—  x86 branches use condition codes
—  different instruction names and variable-length encodings

  I’ll walk you through the tricky parts

April 29, 2009 ISA's, Compilers, and Assembly 7

x86 Registers

  Few, and special purpose
—  8 integer registers
—  two generally used only for stack
—  Not all instructions can use any register

  Little room for temporary values
—  x86 uses “two-address code”
—  op x, y # y = y op x

  Rarely can the compiler fit everything in
registers
—  Stack is used much more heavily

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

April 29, 2009 ISA's, Compilers, and Assembly 8

x86 Stack is Architected! (Not just a convention)

  The esp register _is_ the stack pointer

  x86 includes explicit push and pop instructions
—  push %eax # M[ESP - 4] = EAX; ESP = ESP - 4
—  pop %ecx # ESP = ESP + 4; ECX = M[ESP - 4]
—  It can be seen that, like MIPS, the x86 stack grows down

  call instructions (x86 equivalent to jal) push the return address on stack
—  call label # push next EIP; EIP = label (EIP = instruction pointer)

  Stack also used for passing arguments, pushed in reverse order

  Because esp is constantly changing, use ebp as stack “base pointer”
—  Keeps track of the top of the current stack frame

•  Same as the bottom of the previous stack frame
—  Doesn’t move, so can be used throughout the function

April 29, 2009 ISA's, Compilers, and Assembly 9

A Simple Example

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

int main() {
 int one = 123, two = 456;
 swap(&one, &two);
 ...
}

April 29, 2009 ISA's, Compilers, and Assembly 10

A Simple Example

…
subl $8, %esp
movl $123, -8(%ebp)
movl $456, -4(%ebp)
leal -4(%ebp), %eax
pushl %eax
leal -8(%ebp), %eax
pushl %eax
call swap
...

int main() {
 int one = 123, two = 456;
 swap(&one, &two);
 ...
}

%ebp,esp

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

Key:
sub = subtract
l = long (32-bit operation)
$8 = literal 8
%esp = stack pointer register
ESP = ESP - 8

April 29, 2009 ISA's, Compilers, and Assembly 11

A Simple Example

…
subl $8, %esp
movl $123, -8(%ebp)
movl $456, -4(%ebp)
leal -4(%ebp), %eax
pushl %eax
leal -8(%ebp), %eax
pushl %eax
call swap
...

int main() {
 int one = 123, two = 456;
 swap(&one, &two);
 ...
}

%ebp

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

Key:
mov = data movement
l = long (32-bit operation)
$123 = literal 123
-8(%ebp) = base + offset addressing
M[EBP - 8] = 123

%esp

April 29, 2009 ISA's, Compilers, and Assembly 12

A Simple Example

…
subl $8, %esp
movl $123, -8(%ebp)
movl $456, -4(%ebp)
leal -4(%ebp), %eax
pushl %eax
leal -8(%ebp), %eax
pushl %eax
call swap
...

int main() {
 int one = 123, two = 456;
 swap(&one, &two);
 ...
}

%ebp

123

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

%esp

April 29, 2009 ISA's, Compilers, and Assembly 13

A Simple Example

…
subl $8, %esp
movl $123, -8(%ebp)
movl $456, -4(%ebp)
leal -4(%ebp), %eax
pushl %eax
leal -8(%ebp), %eax
pushl %eax
call swap
...

int main() {
 int one = 123, two = 456;
 swap(&one, &two);
 ...
}

%ebp

456

123

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

Key:
(push arguments in reverse order)
lea = load effective address
(don’t do a load, just compute addr.)
EAX = EBP - 4
M[ESP - 4] = EAX
ESP = ESP - 4

%esp

April 29, 2009 ISA's, Compilers, and Assembly 14

A Simple Example

…
subl $8, %esp
movl $123, -8(%ebp)
movl $456, -4(%ebp)
leal -4(%ebp), %eax
pushl %eax
leal -8(%ebp), %eax
pushl %eax
call swap
...

int main() {
 int one = 123, two = 456;
 swap(&one, &two);
 ...
}

0x118

%ebp

456

123

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

%esp

April 29, 2009 ISA's, Compilers, and Assembly 15

A Simple Example

…
subl $8, %esp
movl $123, -8(%ebp)
movl $456, -4(%ebp)
leal -4(%ebp), %eax
pushl %eax
leal -8(%ebp), %eax
pushl %eax
call swap
...

int main() {
 int one = 123, two = 456;
 swap(&one, &two);
 ...
}

0x118

0x114

%ebp

456

123

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

Key:
M[ESP - 4] = next_EIP
ESP = ESP - 4
EIP = swap

%esp

0x108

0x104

April 29, 2009 ISA's, Compilers, and Assembly 16

A Simple Example

…
subl $8, %esp
movl $123, -8(%ebp)
movl $456, -4(%ebp)
leal -4(%ebp), %eax
pushl %eax
leal -8(%ebp), %eax
pushl %eax
call swap
...

int main() {
 int one = 123, two = 456;
 swap(&one, &two);
 ...
}

0x118

0x114

%ebp

456

123

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c
%esp RTN ADR
 0x108

0x104

April 29, 2009 ISA's, Compilers, and Assembly 17

The “swap” function

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

 movl 12(%ebp),%ecx
 movl 8(%ebp),%edx
 movl (%ecx),%eax
 movl (%edx),%ebx
 movl %eax,(%edx)
 movl %ebx,(%ecx)

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

Body

Set

Up

Finish

April 29, 2009 ISA's, Compilers, and Assembly 18

Function Prologue

0x118

0x114

%ebp

456

123

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c
%esp RTN ADR
 0x108

0x104

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Save the old base pointer on the stack

April 29, 2009 ISA's, Compilers, and Assembly 19

Function Prologue

0x118

0x114

%ebp

456

123

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

%esp
RTN ADR

0x11c

0x108

0x104

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Old stack pointer becomes new base pointer.

April 29, 2009 ISA's, Compilers, and Assembly 20

Function Prologue

0x118

0x114

456

123

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

%ebp,esp
RTN ADR

0x11c

0x108

0x104

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Save register ebx, which is callee saved.

0x100

April 29, 2009 ISA's, Compilers, and Assembly 21

Function Prologue

0x118

0x114

%esp

456

123

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

%ebp
RTN ADR

0x11c

0x108

0x104

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Save register ebx, which is callee saved.

…
 0x100

April 29, 2009 ISA's, Compilers, and Assembly 22

The swap itself

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx

Register
Variable

%ecx yp
%edx xp
%eax t1
%ebx t0

%eax

%edx

%ecx

%ebx

0x118

0x118

0x114

%esp

456

123

0x118

0x114

0x110

0x10c
RTN ADR

0x11c

0x108

0x104
…
 0x100

%ebp

April 29, 2009 ISA's, Compilers, and Assembly 23

The swap itself

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx

Register
Variable

%ecx yp
%edx xp
%eax t1
%ebx t0

%eax

%edx

%ecx

%ebx

0x114

0x118

0x118

0x114

%esp

456

123

0x118

0x114

0x110

0x10c
RTN ADR

0x11c

0x108

0x104
…
 0x100

%ebp

April 29, 2009 ISA's, Compilers, and Assembly 24

The swap itself

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx

Register
Variable

%ecx yp
%edx xp
%eax t1
%ebx t0

%eax

%edx

%ecx

%ebx

456

0x114

0x118

0x118

0x114

%esp

456

123

0x118

0x114

0x110

0x10c
RTN ADR

0x11c

0x108

0x104
…
 0x100

%ebp

April 29, 2009 ISA's, Compilers, and Assembly 25

The swap itself

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx

Register
Variable

%ecx yp
%edx xp
%eax t1
%ebx t0

%eax

%edx

%ecx

%ebx

456

0x114

0x118

123

0x118

0x114

%esp

456

123

0x118

0x114

0x110

0x10c
RTN ADR

0x11c

0x108

0x104
…
 0x100

%ebp

April 29, 2009 ISA's, Compilers, and Assembly 26

The swap itself

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx

Register
Variable

%ecx yp
%edx xp
%eax t1
%ebx t0

%eax

%edx

%ecx

%ebx

456

0x114

0x118

123

0x118

0x114

%esp

456

456

0x118

0x114

0x110

0x10c
RTN ADR

0x11c

0x108

0x104
…
 0x100

%ebp

April 29, 2009 ISA's, Compilers, and Assembly 27

The swap itself

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx

Register
Variable

%ecx yp
%edx xp
%eax t1
%ebx t0

%eax

%edx

%ecx

%ebx

456

0x114

0x118

123

0x118

0x114

%esp

123

456

0x118

0x114

0x110

0x10c
RTN ADR

0x11c

0x108

0x104
…
 0x100

%ebp

April 29, 2009 ISA's, Compilers, and Assembly 28

Function Epilogue

0x118

0x114

%esp

123

456

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

%ebp
RTN ADR

0x11c

0x108

0x104

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

Restore register ebx.

…
 0x100

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

April 29, 2009 ISA's, Compilers, and Assembly 29

Function Epilogue

0x118

0x114

%esp

123

456

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

%ebp
RTN ADR

0x11c

0x108

0x104

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

Copy the base pointer to the stack pointer.

…
 0x100

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

April 29, 2009 ISA's, Compilers, and Assembly 30

Function Epilogue

0x118

0x114

123

456

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

%ebp,esp
RTN ADR

0x11c

0x108

0x104

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

Restore the old base pointer.

…
 0x100

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

April 29, 2009 ISA's, Compilers, and Assembly 31

Function Epilogue

0x118

0x114

%esp

123

456

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

%ebp

RTN ADR

0x11c

0x108

0x104

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

Return, which pops the return address off the stack

…
 0x100

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

April 29, 2009 ISA's, Compilers, and Assembly 32

Memory Operands

  Most instructions (not just mov) can include a memory operand
— addl -8(%ebp), %eax # EAX = EAX + M[EBP - 8]
— incl -8(%ebp) # M[EBP - 8] = M[EBP - 8] + 1

  More complex addressing modes are supported
—  general form: D(Rb,Ri,S) # Mem[Reg[Rb]+S*Reg[Ri]+ D]

• D: Constant “displacement” 1, 2, or 4 bytes
• Rb: Base register: Any of 8 integer registers
• Ri: Index register: Any, except for %esp

 Unlikely you’d use %ebp, either
• S: Scale: 1, 2, 4, or 8

— Useful for accessing arrays of scalars (including those within structs)

April 29, 2009 ISA's, Compilers, and Assembly 33

Address Computation Examples

%edx

%ecx

0xf000

0x100

Expression Computation Address

0x8(%edx) 0xf000 + 0x8 0xf008

(%edx,%ecx) 0xf000 + 0x100 0xf100

(%edx,%ecx,4) 0xf000 + 4*0x100 0xf400

0x80(,%edx,2) 2*0xf000 + 0x80 0x1e080

April 29, 2009 ISA's, Compilers, and Assembly 34

Control Flow = Condition Codes

  Conditional control flow is a two step process:
—  Setting a condition code (held in the EFLAGS register)

•  done by most arithmetic operations
—  Branching based on a condition code bit

  Standard sequence involves using the compare (cmp) instruction
—  Compare acts like a subtract, but doesn’t write dest. register

 cmp 8(%ebx), %eax # set flags based on (EAX - M[EBX + 8])
 jg branch_target # taken if (EAX > M[EBX + 8])

April 29, 2009 ISA's, Compilers, and Assembly 35

Control Flow Example

int sum(int n) {
 int i, sum = 0;
 for (i = 1 ; i <= n ; ++ i) {
 sum += i;
 }
 return sum;
}

April 29, 2009 ISA's, Compilers, and Assembly 36

Control Flow Example

sum: pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %ecx # n (was argument)
 movl $1, %edx # i = 1
 xorl %eax, %eax # sum = 0
 cmpl %ecx, %edx # (i ? n), sets cond. codes
 jg .L8 # branch if (i > n)

.L6:
 addl %edx, %eax # sum += i
 incl %edx # i += 1
 cmpl %ecx, %edx # (i ? n)
 jle .L6 # branch if (i <= n)

.L8:

int sum(int n) {
 int i, sum = 0;
 for (i = 1 ; i <= n ; ++ i) {
 sum += i;
 }
 return sum;
}

April 29, 2009 ISA's, Compilers, and Assembly 37

Variable Length Instructions

08048344 <sum>:

 8048344: 55 push %ebp
 8048345: 89 e5 mov %esp,%ebp
 8048347: 8b 4d 08 mov 0x8(%ebp),%ecx
 804834a: ba 01 00 00 00 mov $0x1,%edx
 804834f: 31 c0 xor %eax,%eax
 8048351: 39 ca cmp %ecx,%edx
 8048353: 7f 0a jg 804835f
 8048355: 8d 76 00 lea 0x0(%esi),%esi
 ...

 804835f: c9 leave
 8048360: c3 ret

  Instructions range in size from 1 to 17 bytes
—  Commonly used instructions are short (think compression)

•  In general, x86 has smaller code than MIPS
  Many different instruction formats, plus pre-fixes, post-fixes

—  Harder to decode for the machine (more on this later)

April 29, 2009 ISA's, Compilers, and Assembly 38

Why did Intel win?

x86 won because it was the first 16-bit chip by two years.
  IBM put it in PCs because there was no competing choice
  Rest is inertia and “financial feedback”

—  x86 is most difficult ISA to implement for high performance, but
—  Because Intel sells the most processors ...
—  It has the most money ...
—  Which it uses to hire more and better engineers ...
—  Which is uses to maintain competitive performance ...
—  And given equal performance, compatibility wins ...
—  So Intel sells the most processors.

