
April 20, 2009 ISA's, Compilers, and Assembly 1

CS232 roadmap

In the first 3 quarters of the class, we have covered
1.  Understanding the relationship between HLL and assembly code
2.  Processor design, pipelining, and performance
3.  Memory systems, caches, virtual memory, I/O, and ECC

The next major topic is: performance tuning
  How can I, as a programmer, make my programs run fast?
  The first step is figuring out where/why the program is slow?

—  Program profiling
  How does one go about optimizing a program?

—  Use better algorithms (do this first!)
—  Exploit the processor better (3 ways)

1.  Write hand-tuned assembly versions of hot spots
2.  Getting more done with every instruction
3.  Using more than one processor

April 20, 2009 ISA's, Compilers, and Assembly 2

Performance Optimization

  Until you are an expert, first write a working version of the program
  Then, and only then, begin tuning, first collecting data, and iterate

—  Otherwise, you will likely optimize what doesn’t matter

“We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.” -- Sir Tony Hoare

April 20, 2009 ISA's, Compilers, and Assembly 3

Building a benchmark

  You need something to gauge your progress.
—  Should be representative of how the program will be used

April 20, 2009 ISA's, Compilers, and Assembly 4

Instrumenting your program

  We can do this by hand. Consider: test.c --> test2.c
—  Let’s us know where the program is spending its time.
—  But implementing it is tedious; consider instrumenting 130k lines of

code

April 20, 2009 ISA's, Compilers, and Assembly 5

Using tools to do instrumentation

  Two GNU tools integrated into the GCC C compiler

  Gprof: The GNU profiler
—  Compile with the -pg flag

•  This flag causes gcc to keep track of which pieces of source code
correspond to which chunks of object code and links in a profiling
signal handler.

—  Run as normal; program requests the operating system to periodically
send it signals; the signal handler records what instruction was
executing when the signal was received in a file called gmon.out

—  Display results using gprof command
•  Shows how much time is being spent in each function.
•  Shows the calling context (the path of function calls) to the hot

spot.

April 20, 2009 ISA's, Compilers, and Assembly 6

Example gprof output

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 81.89 4.16 4.16 37913758 0.00 0.00 cache_access
 16.14 4.98 0.82 1 0.82 5.08 sim_main
 1.38 5.05 0.07 6254582 0.00 0.00 update_way_list
 0.59 5.08 0.03 1428644 0.00 0.00 dl1_access_fn
 0.00 5.08 0.00 711226 0.00 0.00 dl2_access_fn
 0.00 5.08 0.00 256830 0.00 0.00 yylex

Over 80% of time spent in one function

index % time self children called name
 0.82 4.26 1/1 main [2]
[1] 100.0 0.82 4.26 1 sim_main [1]
 4.18 0.07 36418454/36484188 cache_access <cycle 1> [4]
 0.00 0.01 10/10 sys_syscall [9]
 0.00 0.00 2935/2967 mem_translate [16]
 0.00 0.00 2794/2824 mem_newpage [18]

Provides calling context (main calls sim_main calls cache_access) of hot spot

April 20, 2009 ISA's, Compilers, and Assembly 7

Using tools for instrumentation (cont.)

  Gprof didn’t give us information on where in the function we were
spending time. (cache_access is a big function; still needle in
haystack)

  Gcov: the GNU coverage tool
—  Compile/link with the -fprofile-arcs -ftest-coverage options

•  Adds code during compilation to add counters to every control
flow edge (much like our by hand instrumentation) to compute
how frequently each block of code gets executed.

—  Run as normal
—  For each xyz.c file an xyz.gdna and xyz.gcno file are generated
—  Post-process with gcov xyz.c

•  Computes execution frequency of each line of code
•  Marks with ##### any lines not executed

 Useful for making sure that you tested your whole program

April 20, 2009 ISA's, Compilers, and Assembly 8

Example gcov output

 14282656: 540: if (cp->hsize) {
 #####: 541: int hindex = CACHE_HASH(cp, tag);
 -: 542:
 #####: 543: for (blk=cp->sets[set].hash[hindex];
 -: 544: blk;
 -: 545: blk=blk->hash_next)
 -: 546: {
 #####: 547: if (blk->tag == tag && (blk->status & CACHE_BLK_VALID))
 #####: 548: goto cache_hit;
 -: 549: }
 -: 550: } else {
 -: 551: /* linear search the way list */
753030193: 552: for (blk=cp->sets[set].way_head;
 -: 553: blk;
 -: 554: blk=blk->way_next) {
751950759: 555: if (blk->tag == tag && (blk->status & CACHE_BLK_VALID))
738747537: 556: goto cache_hit;
 -: 557: }
 -: 558: }

Loop executed over 50 interations on average (751950759/14282656)

Code never executed

April 20, 2009 ISA's, Compilers, and Assembly 9

Conclusion

  The second step to making a fast program is finding out why it is slow
—  The first step is making a working program
—  Your intuition where it is slow is probably wrong

•  So don’t guess, collect data!

  Many tools already exist for automatically instrumenting your code
—  Identify the “hot spots” in your code where time is being spent
—  Two example tools:

•  Gprof: periodically interrupts program
•  Gcov: inserts counters into code

—  We’ll see Vtune in section, which explains why the code is slow

  If you’ve never tuned your program, there is probably “low hanging fruit”
—  Most of the time is spent in one or two functions
—  Try using better data structures (225) or algorithms (473) to speed

these up

