
April 2, 2009 More cache organizations 1

How big is the cache?

For a byte-addressable machine with 16-bit addresses with a cache with the
following characteristics:

  It is direct-mapped (as discussed last time)
  Each block holds one byte
  The cache index is the four least significant bits

Two questions:
  How many blocks does the cache hold?

  How many bits of storage are required to build the cache (e.g., for the
data array, tags, etc.)?

April 2, 2009 More cache organizations 2

How big is the cache?

For a byte-addressable machine with 16-bit addresses with a cache with the
following characteristics:

  It is direct-mapped (as discussed last time)
  Each block holds one byte
  The cache index is the four least significant bits

Two questions:
  How many blocks does the cache hold?

4-bit index -> 24 = 16 blocks

  How many bits of storage are required to build the cache (e.g., for the data
array, tags, etc.)?

tag size = 12 bits (16 bit address - 4 bit index)
(12 tag bits + 1 valid bit + 8 data bits) x 16 blocks = 21 bits x 16 = 336 bits

April 2, 2009 More cache organizations 3

Direct-mapped caches

  If the cache contains 2k
 blocks, then the k least
 significant bits (LSBs) are
 used as the index.

—  data from address i
 would be stored in
 block i mod 2k.

  For example, data from
 memory address 11 maps
 to cache block 3 on the
 right, since 11 mod 4 = 3
 and since the lowest two
 bits of 1011 are 11.

0
1
2
3

Index

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Memory
Address

April 2, 2009 More cache organizations 4

Tags & Valid bits

  To find data stored in the cache, we need to add tags to distinguish
between different memory locations that map to the same cache block.

  We include a single valid bit per block to distinguish full and empty
blocks.

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Tag Data

00
11
01
01

Valid
1
1
1
1

April 2, 2009 ©2003 Craig Zilles (derived from
slides by Howard Huang)

5

More cache organizations

  Today, we’ll explore some cache organizations to improve hit rate
—  How can we take advantage of spatial locality too?
—  How can we reduce the number of potential conflicts?

April 2, 2009 More cache organizations 6

  One-byte cache blocks don’t take advantage of spatial locality, which
predicts that an access to one address will be followed by an access to a
nearby address.

  What can we do?

Spatial locality

April 2, 2009 More cache organizations 7

  What we can do is make the cache block size larger than one byte.

  Here we use two-
 byte blocks, so
 we can load the
 cache with two
 bytes at a time.

  If we read from
 address 12, the
 data in addresses
 12 and 13 would
 both be copied to
 cache block 2.

Spatial locality

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Memory
Address

0
1
2
3

Index

April 2, 2009 More cache organizations 8

  Now how can we figure out where data should be placed in the cache?
  It’s time for block addresses! If the cache block size is 2n bytes, we can

conceptually split the main memory into 2n-byte chunks too.
  To determine the block address of a byte

 address i, you can do the integer division

 i / 2n

  Our example has two-byte cache blocks, so
 we can think of a 16-byte main memory as
 an “8-block” main memory instead.

  For instance, memory addresses 12 and 13
 both correspond to block address 6, since
 12 / 2 = 6 and 13 / 2 = 6.

Block addresses

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Byte
Address

0

1

2

3

4

5

6

7

Block
Address

April 2, 2009 More cache organizations 9

  Once you know the block address, you can map it to the cache as before:
find the remainder when the block address is divided by the number of
cache blocks.

  In our example,
 memory block 6
 belongs in cache
 block 2, since
 6 mod 4 = 2.

  This corresponds
 to placing data
 from memory
 byte addresses
 12 and 13 into
 cache block 2.

Cache mapping

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Byte
Address

0
1
2
3

Index

0

1

2

3

4

5

6

7

Block
Address

April 2, 2009 More cache organizations 10

  When we access one byte of data in memory, we’ll copy its entire block
into the cache, to hopefully take advantage of spatial locality.

  In our example, if a program reads from byte address 12 we’ll load all of
memory block 6 (both addresses 12 and 13) into cache block 2.

  Note byte address 13 corresponds to the same memory block address! So
a read from address 13 will also cause memory block 6 (addresses 12 and
13) to be loaded into cache block 2.

  To make things simpler, byte i of a memory block is always stored in byte
i of the corresponding cache block.

Data placement within a block

12
13

Byte
Address

2

Cache
Block Byte 1 Byte 0

April 2, 2009 More cache organizations 11

Locating data in the cache

  Let’s say we have a cache with 2k blocks, each containing 2n bytes.
  We can determine where a byte of data belongs in this cache by looking

at its address in main memory.
—  k bits of the address will select one of the 2k cache blocks.
—  The lowest n bits are now a block offset that decides which of the 2n

bytes in the cache block will store the data.

  Our example used a 22-block cache with 21 bytes per block. Thus,
memory address 13 (1101) would be stored in byte 1 of cache block 2.

m-bit Address

k bits (m-k-n) bits
n-bit Block

Offset Tag Index

4-bit Address

2 bits 1 bit
1-bit Block

Offset 1 10 1

April 2, 2009 More cache organizations 12

A picture

 1

0
1
2
3

Index Tag Data Valid

Address (4 bits)

=

Hit

2

Block offset

Mux

Data

8 8

8

1 10

Tag Index (2 bits)

1 0

April 2, 2009 More cache organizations 13

An exercise

n

0
1
2
3

Index Tag Data Valid

Address (4 bits)

=

Hit

2

Block offset

Mux

Data

8 8

8

n nn

Tag Index (2 bits)

1
1
1

1

0
1
0
1

0xCA 0xFE
0xDE 0xAD
0xBE 0xEF
0xFE 0xED

0

0

For the addresses below,
what byte is read from the
cache (or is there a miss)?

  1010
  1110
  0001
  1101

April 2, 2009 More cache organizations 14

An exercise

n

0
1
2
3

Index Tag Data Valid

Address (4 bits)

=

Hit

2

Block offset

Mux

Data

8 8

8

n nn

Tag Index (2 bits)

1
1
1

1

0
1
0
1

0xCA 0xFE
0xDE 0xAD
0xBE 0xEF
0xFE 0xED

0

0

For the addresses below,
what byte is read from the
cache (or is there a miss)?

  1010 (0xDE)
  1110 (miss, invalid)
  0001 (0xFE)
  1101 (miss, bad tag)

April 2, 2009 More cache organizations 15

Using arithmetic

  An equivalent way to find the right location within the cache is to use
arithmetic again.

  We can find the index in two steps, as outlined earlier.
—  Do integer division of the address by 2n to find the block address.
—  Then mod the block address with 2k to find the index.

  The block offset is just the memory address mod 2n.
  For example, we can find address 13 in a 4-block, 2-byte per block cache.

—  The block address is 13 / 2 = 6, so the index is then 6 mod 4 = 2.
—  The block offset would be 13 mod 2 = 1.

m-bit Address

k bits (m-k-n) bits
n-bit Block

Offset Tag Index

April 2, 2009 More cache organizations 16

A diagram of a larger example cache

  Here is a cache with 1,024
blocks of 4 bytes each, and
32-bit memory addresses.

0
1
2
3
...
...

1022
1023

Index Tag Data Valid

Address (32 bits)

=

Hit

10 20

Tag

2 bits

Mux

Data

8 8 8 8

8

April 2, 2009 More cache organizations 17

A larger example cache mapping

  Where would the byte from memory address 6146 be stored in this direct-
mapped 210-block cache with 22-byte blocks?

  We can determine this with the binary force.
—  6146 in binary is 00...01 1000 0000 00 10.
—  The lowest 2 bits, 10, mean this is the second byte in its block.
—  The next 10 bits, 1000000000, are the block number itself (512).

  Equivalently, you could use your arithmetic mojo instead.
—  The block offset is 6146 mod 4, which equals 2.
—  The block address is 6146/4 = 1536, so the index is 1536 mod 1024, or

512.

April 2, 2009 More cache organizations 18

A larger diagram of a larger example cache mapping

 10

0
1
2
...
512
...

1022
1023

Index Tag Data Valid

Address (32 bits)

=

Hit

10 20

Tag

2 bits

Mux

Data

8 8 8 8

8

0000 0001 1000000000

April 2, 2009 More cache organizations 19

What goes in the rest of that cache block?

  The other three bytes of that cache block come from the same memory
block, whose addresses must all have the same index (1000000000) and
the same tag (00...01).

 10

...
512
...

Index Tag Data Valid

Address (32 bits)

=

Hit

10 20

Tag

Mux

Data

8 8 8 8

8

0000 0001 1000000000

April 2, 2009 More cache organizations 20

  Again, byte i of a memory block is stored into byte i of the corresponding
cache block.
—  In our example, memory block 1536 consists of byte addresses 6144 to

6147. So bytes 0-3 of the cache block would contain data from
address 6144, 6145, 6146 and 6147 respectively.

—  You can also look at the lowest 2 bits of the memory address to find
the block offsets.

 Block offset Memory address Decimal
 00 00..01 1000000000 00 6144
 01 00..01 1000000000 01 6145
 10 00..01 1000000000 10 6146
 11 00..01 1000000000 11 6147

The rest of that cache block

...
512
...

Index Tag Data Valid

April 2, 2009 More cache organizations 21

Disadvantage of direct mapping

  The direct-mapped cache is easy: indices and offsets can be computed
with bit operators or simple arithmetic, because each memory address
belongs in exactly one block.

  But, what happens if a
 program uses addresses
 2, 6, 2, 6, 2, …?

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory
Address

April 2, 2009 More cache organizations 22

Disadvantage of direct mapping

  The direct-mapped cache is easy: indices and offsets can be computed
with bit operators or simple arithmetic, because each memory address
belongs in exactly one block.

  However, this isn’t really
 flexible. If a program uses
 addresses 2, 6, 2, 6, 2, ...,
 then each access will result
 in a cache miss and a load
 into cache block 2.

  This cache has four blocks,
 but direct mapping might
 not let us use all of them.

  This can result in more
 misses than we might like.

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory
Address

April 2, 2009 More cache organizations 23

A fully-associative cache

  A fully-associative cache permits data to be stored in any cache block,
instead of forcing each memory address into one particular block.
—  When data is fetched from memory, it can be placed in any unused

block of the cache.
—  This way we’ll never have a conflict between two or more memory

addresses that map to a single cache block.
  In the previous example, we might put memory address 2 in cache block

2, and address 6 in block 3. Then subsequent repeated accesses to 2 and
6 would all be hits instead of misses.

  If all the blocks are already in use, it’s usually best to replace the least
recently used one, assuming that if it hasn’t used it in a while, it won’t
be needed again anytime soon.

April 2, 2009 More cache organizations 24

The price of full associativity

  However, a fully-associative cache is expensive to implement.
—  Because there is no index field in the address anymore, the entire

address must be used as the tag, increasing the total cache size.
—  Data could be anywhere in the cache, so we must check the tag of

every cache block. That’s a lot of comparators!

...

...

...

Index Tag (32 bits) Data Valid Address (32 bits)

=

Hit

 32

Tag

=

=

April 2, 2009 More cache organizations 25

Set associativity

  An intermediate possibility is a set-associative cache.
—  The cache is divided into groups of blocks, called sets.
—  Each memory address maps to exactly one set in the cache, but data

may be placed in any block within that set.
  If each set has 2x blocks, the cache is a 2x-way associative cache.
  Here are several possible organizations of an eight-block cache.

0
1
2
3
4
5
6
7

 Set

0

1

2

3

 Set

0

1

 Set

direct mapped
8 “sets”, 1 block each

2-way associativity
4 sets, 2 blocks each

4-way associativity
2 sets, 4 blocks each

April 2, 2009 More cache organizations 26

Locating a set associative block

  We can determine where a memory address belongs in an associative
cache in a similar way as before.

  If a cache has 2s sets and each block has 2n bytes, the memory address
can be partitioned as follows.

  Our arithmetic computations now compute a set index, to select a set
within the cache instead of an individual block.

 Block Offset = Memory Address mod 2n

 Block Address = Memory Address / 2n
 Set Index = Block Address mod 2s

Address (m bits)

s (m-s-n) n

 Tag Index Block
offset

April 2, 2009 More cache organizations 27

Example placement in set-associative caches

  Where would data from memory byte address 6195 be placed, assuming
the eight-block cache designs below, with 16 bytes per block?

  6195 in binary is 00...0110000 011 0011.
  Each block has 16 bytes, so the lowest 4 bits are the block offset.
  For the 1-way cache, the next three bits (011) are the set index.

 For the 2-way cache, the next two bits (11) are the set index.
 For the 4-way cache, the next one bit (1) is the set index.

  The data may go in any block, shown in green, within the correct set.

0
1
2
3
4
5
6
7

 Set

0

1

2

3

 Set

0

1

 Set

1-way associativity
8 sets, 1 block each

2-way associativity
4 sets, 2 blocks each

4-way associativity
2 sets, 4 blocks each

April 2, 2009 More cache organizations 28

Block replacement

  Any empty block in the correct set may be used for storing data.
  If there are no empty blocks, the cache controller will attempt to replace

the least recently used block, just like before.
  For highly associative caches, it’s expensive to keep track of what’s

really the least recently used block, so some approximations are used.
We won’t get into the details.

0
1
2
3
4
5
6
7

 Set

0

1

2

3

 Set

0

1

 Set

1-way associativity
8 sets, 1 block each

2-way associativity
4 sets, 2 blocks each

4-way associativity
2 sets, 4 blocks each

April 21, 2003 More cache organizations 29

LRU example

  Assume a fully-associative cache with two blocks, which of the following
memory references miss in the cache.
—  assume distinct addresses go to distinct blocks

LRU Tags

A

B

A

C

B

A

B

addresses
-- -- 0

0 1

April 21, 2003 More cache organizations 30

LRU example

  Assume a fully-associative cache with two blocks, which of the following
memory references miss in the cache.
—  assume distinct addresses go to distinct blocks

LRU Tags

A

B

A

C

B

A

B

addresses
-- -- 0

0 1

A -- 1

A B 0

A B 1

A C 0

B C 1

B A 0

B A 1

miss

miss

miss

miss

miss

On a miss, we
replace the LRU.

On a hit, we just
update the LRU.

April 2, 2009 More cache organizations 31

Set associative caches are a general idea

  By now you may have noticed the 1-way set associative cache is the same
as a direct-mapped cache.

  Similarly, if a cache has 2k blocks, a 2k-way set associative cache would
be the same as a fully-associative cache.

0
1
2
3
4
5
6
7

 Set

0

1

2

3

 Set

0

1

 Set

1-way
8 sets,

1 block each

2-way
4 sets,

2 blocks each

4-way
2 sets,

4 blocks each

0

 Set

8-way
1 set,

8 blocks

direct mapped fully associative

April 2, 2009 More cache organizations 32

2-way set associative cache implementation

0
...
2k

Index Tag Data Valid

Address (m bits)

=

Hit

k (m-k-n)

Tag

 2-to-1 mux

Data

2n

Tag Valid Data

2n

2n

=

Index Block
offset

  How does an implementation of a
2-way cache compare with that of
a fully-associative cache?

  Only two comparators are
 needed.

  The cache tags are a little
 shorter too.

April 2, 2009 More cache organizations 33

Summary

  Larger block sizes can take advantage of spatial locality by loading data
from not just one address, but also nearby addresses, into the cache.

  Associative caches assign each memory address to a particular set within
the cache, but not to any specific block within that set.
—  Set sizes range from 1 (direct-mapped) to 2k (fully associative).
—  Larger sets and higher associativity lead to fewer cache conflicts and

lower miss rates, but they also increase the hardware cost.
—  In practice, 2-way through 16-way set-associative caches strike a good

balance between lower miss rates and higher costs.
  Next time, we’ll talk more about measuring cache performance, and also

discuss the issue of writing data to a cache.

