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How big is the cache? 

For a byte-addressable machine with 16-bit addresses with a cache with the 
following characteristics: 

  It is direct-mapped (as discussed last time) 
  Each block holds one byte 
  The cache index is the four least significant bits 

Two questions: 
  How many blocks does the cache hold? 

  How many bits of storage are required to build the cache (e.g., for the 
data array, tags, etc.)? 
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How big is the cache? 

For a byte-addressable machine with 16-bit addresses with a cache with the 
following characteristics: 

  It is direct-mapped (as discussed last time) 
  Each block holds one byte 
  The cache index is the four least significant bits 

Two questions: 
  How many blocks does the cache hold? 

4-bit index -> 24 = 16 blocks 

  How many bits of storage are required to build the cache (e.g., for the data 
array, tags, etc.)? 

tag size = 12 bits (16 bit address - 4 bit index) 
(12 tag bits + 1 valid bit + 8 data bits) x 16 blocks = 21 bits x 16 = 336 bits 
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Direct-mapped caches 

  If the cache contains 2k 
 blocks, then the k least 
 significant bits (LSBs) are 
 used as the index. 

—  data from address i  
 would be stored in  
 block i mod 2k. 

  For example, data from 
 memory address 11 maps 
 to cache block 3 on the 
 right, since 11 mod 4 = 3 
 and since the lowest two 
 bits of 1011 are 11. 
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Tags & Valid bits 

  To find data stored in the cache, we need to add tags to distinguish 
between different memory locations that map to the same cache block. 

  We include a single valid bit per block to distinguish full and empty 
blocks. 
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More cache organizations 

  Today, we’ll explore some cache organizations to improve hit rate 
—  How can we take advantage of spatial locality too? 
—  How can we reduce the number of potential conflicts? 



April 2, 2009 More cache organizations 6 

  One-byte cache blocks don’t take advantage of spatial locality, which 
predicts that an access to one address will be followed by an access to a 
nearby address.  

  What can we do? 

Spatial locality 
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  What we can do is make the cache block size larger than one byte. 

  Here we use two- 
 byte blocks, so 
 we can load the 
 cache with two 
 bytes at a time. 

  If we read from 
 address 12, the 
 data in addresses 
 12 and 13 would 
 both be copied to 
 cache block 2. 

Spatial locality 
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  Now how can we figure out where data should be placed in the cache? 
  It’s time for block addresses! If the cache block size is 2n bytes, we can 

conceptually split the main memory into 2n-byte chunks too. 
  To determine the block address of a byte 

 address i, you can do the integer division 

  i / 2n 

  Our example has two-byte cache blocks, so 
 we can think of a 16-byte main memory as 
 an “8-block” main memory instead. 

  For instance, memory addresses 12 and 13 
 both correspond to block address 6, since 
 12 / 2 = 6 and 13 / 2 = 6. 

Block addresses 
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  Once you know the block address, you can map it to the cache as before: 
find the remainder when the block address is divided by the number of 
cache blocks. 

  In our example,  
 memory block 6 
 belongs in cache 
 block 2, since 
 6 mod 4 = 2. 

  This corresponds 
 to placing data 
 from memory 
 byte addresses 
 12 and 13 into 
 cache block 2. 

Cache mapping 
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  When we access one byte of data in memory, we’ll copy its entire block 
into the cache, to hopefully take advantage of spatial locality. 

  In our example, if a program reads from byte address 12 we’ll load all of 
memory block 6 (both addresses 12 and 13) into cache block 2. 

  Note byte address 13 corresponds to the same memory block address! So 
a read from address 13 will also cause memory block 6 (addresses 12 and 
13) to be loaded into cache block 2. 

  To make things simpler, byte i of a memory block is always stored in byte 
i of the corresponding cache block. 

Data placement within a block 
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Locating data in the cache 

  Let’s say we have a cache with 2k blocks, each containing 2n bytes. 
  We can determine where a byte of data belongs in this cache by looking 

at its address in main memory. 
—  k bits of the address will select one of the 2k cache blocks. 
—  The lowest n bits are now a block offset that decides which of the 2n 

bytes in the cache block will store the data. 

  Our example used a 22-block cache with 21 bytes per block. Thus, 
memory address 13 (1101) would be stored in byte 1 of cache block 2. 

m-bit Address 

k bits (m-k-n) bits 
n-bit Block 

Offset  Tag Index 

4-bit Address 

2 bits 1 bit 
1-bit Block 

Offset  1 10  1 
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A picture 
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An exercise 
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For the addresses below, 
what byte is read from the  
cache (or is there a miss)? 

  1010   
  1110   
  0001   
  1101   
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An exercise 
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For the addresses below, 
what byte is read from the  
cache (or is there a miss)? 

  1010  (0xDE) 
  1110  (miss, invalid) 
  0001  (0xFE) 
  1101  (miss, bad tag) 
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Using arithmetic 

  An equivalent way to find the right location within the cache is to use 
arithmetic again. 

  We can find the index in two steps, as outlined earlier. 
—  Do integer division of the address by 2n to find the block address. 
—  Then mod the block address with 2k to find the index. 

  The block offset is just the memory address mod 2n. 
  For example, we can find address 13 in a 4-block, 2-byte per block cache. 

—  The block address is 13 / 2 = 6, so the index is then 6 mod 4 = 2. 
—  The block offset would be 13 mod 2 = 1. 

m-bit Address 

k bits (m-k-n) bits 
n-bit Block 

Offset  Tag Index 
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A diagram of a larger example cache 

  Here is a cache with 1,024 
blocks of 4 bytes each, and 
32-bit memory addresses. 
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A larger example cache mapping 

  Where would the byte from memory address 6146 be stored in this direct-
mapped 210-block cache with 22-byte blocks? 

  We can determine this with the binary force. 
—  6146 in binary is 00...01 1000 0000 00 10. 
—  The lowest 2 bits, 10, mean this is the second byte in its block. 
—  The next 10 bits, 1000000000, are the block number itself (512). 

  Equivalently, you could use your arithmetic mojo instead. 
—  The block offset is 6146 mod 4, which equals 2. 
—  The block address is 6146/4 = 1536, so the index is 1536 mod 1024, or 

512. 
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A larger diagram of a larger example cache mapping 

 10 

0 
1 
2 
... 
512 
... 

1022 
1023 

Index Tag Data Valid 

Address (32 bits) 

= 

Hit 

10 20 

Tag 

2 bits 

Mux 

Data 

8 8 8 8 

8 

0000 .... 0001 1000000000 



April 2, 2009 More cache organizations 19 

What goes in the rest of that cache block? 

  The other three bytes of that cache block come from the same memory 
block, whose addresses must all have the same index (1000000000) and 
the same tag (00...01). 
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  Again, byte i of a memory block is stored into byte i of the corresponding 
cache block. 
—  In our example, memory block 1536 consists of byte addresses 6144 to 

6147. So bytes 0-3 of the cache block would contain data from 
address 6144, 6145, 6146 and 6147 respectively. 

—  You can also look at the lowest 2 bits of the memory address to find 
the block offsets. 

  Block offset   Memory address  Decimal 
   00  00..01 1000000000 00   6144 
   01  00..01 1000000000 01   6145 
   10  00..01 1000000000 10   6146 
   11  00..01 1000000000 11   6147 

The rest of that cache block  

... 
512 
... 

Index Tag Data Valid 
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Disadvantage of direct mapping 

  The direct-mapped cache is easy: indices and offsets can be computed 
with bit operators or simple arithmetic, because each memory address 
belongs in exactly one block. 

  But, what happens if a  
 program uses addresses  
 2, 6, 2, 6, 2, …? 

00 
01 
10 
11 

Index 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Memory 
Address 



April 2, 2009 More cache organizations 22 

Disadvantage of direct mapping 

  The direct-mapped cache is easy: indices and offsets can be computed 
with bit operators or simple arithmetic, because each memory address 
belongs in exactly one block. 

  However, this isn’t really 
 flexible. If a program uses 
 addresses 2, 6, 2, 6, 2, ..., 
 then each access will result 
 in a cache miss and a load 
 into cache block 2. 

  This cache has four blocks, 
 but direct mapping might 
 not let us use all of them. 

  This can result in more 
 misses than we might like. 
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A fully-associative cache 

  A fully-associative cache permits data to be stored in any cache block, 
instead of forcing each memory address into one particular block. 
—  When data is fetched from memory, it can be placed in any unused 

block of the cache.  
—  This way we’ll never have a conflict between two or more memory 

addresses that map to a single cache block. 
  In the previous example, we might put memory address 2 in cache block 

2, and address 6 in block 3. Then subsequent repeated accesses to 2 and 
6 would all be hits instead of misses. 

  If all the blocks are already in use, it’s usually best to replace the least 
recently used one, assuming that if it hasn’t used it in a while, it won’t 
be needed again anytime soon. 
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The price of full associativity 

  However, a fully-associative cache is expensive to implement. 
—  Because there is no index field in the address anymore, the entire 

address must be used as the tag, increasing the total cache size. 
—  Data could be anywhere in the cache, so we must check the tag of 

every cache block. That’s a lot of comparators! 
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Tag 
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Set associativity 

  An intermediate possibility is a set-associative cache. 
—  The cache is divided into groups of blocks, called sets. 
—  Each memory address maps to exactly one set in the cache, but data 

may be placed in any block within that set. 
  If each set has 2x blocks, the cache is a 2x-way associative cache.  
  Here are several possible organizations of an eight-block cache. 
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Locating a set associative block 

  We can determine where a memory address belongs in an associative 
cache in a similar way as before. 

  If a cache has 2s sets and each block has 2n bytes, the memory address 
can be partitioned as follows. 

  Our arithmetic computations now compute a set index, to select a set 
within the cache instead of an individual block. 

  Block Offset  = Memory Address mod 2n 

  Block Address  = Memory Address / 2n 
  Set Index  = Block Address mod 2s 

Address (m bits) 

s (m-s-n) n 

 Tag Index Block 
offset 
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Example placement in set-associative caches 

  Where would data from memory byte address 6195 be placed, assuming 
the eight-block cache designs below, with 16 bytes per block? 

  6195 in binary is 00...0110000 011 0011. 
  Each block has 16 bytes, so the lowest 4 bits are the block offset. 
  For the 1-way cache, the next three bits (011) are the set index. 

 For the 2-way cache, the next two bits (11) are the set index. 
 For the 4-way cache, the next one bit (1) is the set index. 

  The data may go in any block, shown in green, within the correct set. 
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Block replacement 

  Any empty block in the correct set may be used for storing data. 
  If there are no empty blocks, the cache controller will attempt to replace 

the least recently used block, just like before.  
  For highly associative caches, it’s expensive to keep track of what’s 

really the least recently used block, so some approximations are used. 
We won’t get into the details. 
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LRU example 

  Assume a fully-associative cache with two blocks, which of the following 
memory references miss in the cache.   
—  assume distinct addresses go to distinct blocks 
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LRU example 

  Assume a fully-associative cache with two blocks, which of the following 
memory references miss in the cache.   
—  assume distinct addresses go to distinct blocks 

LRU Tags 
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addresses 
-- -- 0 
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A -- 1 

A B 0 

A B 1 

A C 0 

B C 1 

B A 0 

B A 1 

miss 

miss 

miss 

miss 

miss 

On a miss, we 
replace the LRU. 

On a hit, we just 
update the LRU. 
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Set associative caches are a general idea 

  By now you may have noticed the 1-way set associative cache is the same 
as a direct-mapped cache. 

  Similarly, if a cache has 2k blocks, a 2k-way set associative cache would 
be the same as a fully-associative cache. 
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2-way set associative cache implementation 
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  How does an implementation of a 
2-way cache compare with that of 
a fully-associative cache? 

  Only two comparators are 
 needed. 

  The cache tags are a little 
 shorter too. 
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Summary 

  Larger block sizes can take advantage of spatial locality by loading data 
from not just one address, but also nearby addresses, into the cache. 

  Associative caches assign each memory address to a particular set within 
the cache, but not to any specific block within that set. 
—  Set sizes range from 1 (direct-mapped) to 2k (fully associative).  
—  Larger sets and higher associativity lead to fewer cache conflicts and 

lower miss rates, but they also increase the hardware cost. 
—  In practice, 2-way through 16-way set-associative caches strike a good 

balance between lower miss rates and higher costs. 
  Next time, we’ll talk more about measuring cache performance, and also 

discuss the issue of writing data to a cache. 


