Forwarding

= Previously, we introduced a pipelined MIPS processor which executes
several instructions simultaneously.

— Each instruction requires five stages, and five cycles, to complete.
— Each stage uses different functional units of the datapath.

— So we can execute up to five instructions in any clock cycle, with
each instruction in a different stage and using different hardware.

= Today we’ll introduce some problems that data hazards can cause for our
pipelined processor, and show how to handle them with forwarding.

March 6, 2009 ©2003 Craig Zilles (derived from 1
slides by Howard Huang)

The pipelined datapath

(1)«
ID/EX
"[WH EX/MEM
™ Control PIWE MEM/WB
IF/ID EX] PWE
4 — | —_— |
P >A} >
Cc Shift
RegWrite left 2
e&— » Read Read > ;\
register 1 data 1
Read Instruction ALU Zerof—»p.
address [31-0] [¢ > Read Read > |—— 0
register 2 data 2 g ResSultfmmp| |—@—p Address
Write —
. > . 1 Data
Instruction register memo MemToReg
memory | Write Registers ALUOp Y
data ALUSrc Write Read > >
g " data data 1
Instr [15 - 0] Sign R
W > RegDst ‘ 1o
Instr [20 - 16] R ‘Aﬂ 10
Instr [15 - 11] > >
> > 1
March 6, 2009 Forwarding 2

Pipeline diagram review

Clock cycle
471 2 3 4 A5 6 7 8 9
lw $8, 4(529) IF ID | EX | MEM WBT
/
sub $2, $4, $5 IF ID | EX | MEM |} WB
| e
and $9, $10, $11 IF ID | EX !MEM WB
7
or $16, $17, $18 IF D | EX | MEM | WB
add $13, $14, $0 IF ID | EX | MEM | WB

—ef

» This diagram shows the execution of an ideal code fragment.
— Each instruction needs a total of five cycles for execution.
— One instruction begins on every clock cycle for the first five cycles.
— One instruction completes on each cycle from that time on.

March 6, 2009 Forwarding

Our examples are too simple

» Here is the example instruction sequence used to illustrate pipelining on
the previous page.

Tw $8, _4(%$29)

sub $2, $4, $5 __
and $9, $10, $11
or $16, $17, $18
add $13, $14, $0

= The instructions in this example are independent.
— Each instruction reads and writes completely different registers.
— Our datapath handles this sequence easily, as we saw last time.
= But most sequences of instructions are not independent!

March 6, 2009 Forwarding

An example with dependencies

sub $2, preduces
and CONSUmeES
or
add
Sw

March 6, 2009 Forwarding 5

An example with dependencies

sub $2, $1, $3

and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100(%2)

= There are several dependencies in this new code fragment.
— The first instruction, SUB, stores a value into S2.
— That register is used as a source in the rest of the instructions.
= This is not a problem for the single-cycle datapath.
— Each instruction is executed completely before the next one begins.

— This ensures that instructions 2 through 5 above use the new value of
$2 (the sub result), just as we expect.

= How would this code sequence fare in our pipelined datapath?

March 6, 2009 Forwarding

Data hazards in the pipeline diagram

Clock cycle
1 2 3 4 5 6 7 8 9
sub 52, $1, $3 IF | ID | EX | MEM
and $12, 52, $5 IF_} | EX | MEM | WB
or $13, %6, 52 LL_LE(J EX | MEM | WB
add $14, $2, $2 IF | ID | EX [MEM | WB
sw $15, 100(52) IF | ID | EX [MEM | WB

= The SUB instruction does not write to register $2 until clock cycle 5. This
causes two data hazards in our current pipelined datapath.

— The AND reads register S2 in cycle 3. Since SUB hasn’t modified the
register yet, this will be the old value of $2, not the new one.

— Similarly, the OR instruction uses register S2 in cycle 4, again before
it’s actually updated by SUB.

March 6, 2009 Forwarding

Things that are okay

Clock cycle
1 2 3 4 5 6 7 8 9
sub $2, $1, $3 IF | ID | EX MEM%B
and $12, $2, $5 IF | ID | EX A\\EM WB
or $13, %6, $2 IF | ID é\x\]\MEM WB
add $14, $2, $2 IF | | \kx MEM | WB
sw $15, 100(52) IF |@\h,| EX | MEM | WB

= The ADD instruction is okay, because of the register file design.
— Registers are written at the beginning of a clock cycle.

— The new value will be available by the end of that cycle.

= The SW is no problem at all, since it reads $2 after the SUB finishes.

March 6, 2009

Forwarding

Dependency arrows

Clock cycle
1 2 3 4 5 6 7 8 9

sub $2, $1, $3 IF | ID | EX/TMEM | W

/[/
and $12, $2, $5 IF | {ID“T EX | MEM||\ WB

\ // 1\
or $13, $6, $2 NF | IDA|/EX || NEM | WB

—" \
add $14, $2, $2 F | ID? EX\ MEM | WB
sw $15, 100(52) IF | ID'| EX | MEM | WB

= Arrows indicate the flow of data between instructions.
— The tails of the arrows show when register $2 is written.

— The heads of the arrows show when S$2 is read.

= Any arrow that points backwards in time represents a data hazard in our

basic pipelined datapath. Here, hazards exist between instructions 1 & 2

and 1 & 3.

March 6, 2009

Forwarding

sub $2, $1, S3

and $12, $2, S5

or $13, S6, S2

add $14, S2, S2

sw $15, 100(52)

March 6, 2009

A fancier pipeline diagram

I Reg

Clock cycle

Forwarding

Reg

Reg

DM

Reg

10

A more detailed look at the pipeline

= We have to eliminate the hazards, so the AND and OR instructions in our

example will use the correct value for register S2.
= When is the data actually produced and consumed?

= What can we do?

sub $2, $1, S3
and $12, S2, S5

or $13, S6, S2

March 6, 2009

Clock cycle
1 2 3 4 5 6 7
IF | ID | EX{I/MEM | WB
IF | ID MEM | WB
IF ID\I EX | MEM | WB

Forwarding

11

A more detailed look at the pipeline

= We have to eliminate the hazards, so the AND and OR instructions in our

example will use the correct value for register S2.
» Let’s look at when the data is actually produced and consumed.

— The SUB instruction produces its result in its EX stage, during cycle 3

in the diagram below.

— The AND and OR need the new value of S2 in their EX stages, during

clock cycles 4-5 here.

sub 52, $1, S3

and $12, S2, S5

or $13, S6, S2

March 6, 2009

Clock cycle
1 2 3 4 5 6 7
IF ID EX | MEM | WB
IF ID EX | MEM | WB
IF ID EX | MEM | WB

Forwarding

Bypassing the register file

= The actual result $1 - $3 is computed in clock cycle 3, before it’s needed
in cycles 4 and 5.

= |f we could somehow bypass the writeback and register read stages when
needed, then we can eliminate these data hazards.

— Today we’ll focus on hazards involving arithmetic instructions.
— Next time, we’ll examine the lw instruction.

= Essentially, we need to pass the ALU output from SUB directly to the AND
and OR instructions, without going through the register file.

Clock cycle
1 2 3 4 5 6 7
sub $2, $1, S3 |F ID EX | MEM | WB
and $12, $2, S5 |F ID EX | MEM | WB
or $13, $6, 52 |F ID EX | MEM | WB

March 6, 2009

Forwarding

Where to find the ALU result

= The ALU result generated in the EX stage is normally passed through the
pipeline registers to the MEM and WB stages, before it is finally written to
the register file.

= This is an abridged diagram of our pipelined datapath.

IF/ID

PC

Instruction

\ 4

memory

A 4

Registers

ID/EX

ALU

Rt

MEM/WB

Rd

A 4 A 4

Data
memory

\4 A\ 4

G

\ 4

MliAIlhhlhlHnHnnn i

March 6, 2009

Forwarding

14

Forwarding

= Since the pipeline registers already contain the ALU result, we could just
forward that value to subsequent instructions, to prevent data hazards.

— In clock cycle 4, the AND instruction can get the value $1 - $3 from
the EX/MEM pipeline register used by sub.

— Then in cycle 5, the OR can get that same result from the MEM/WB
pipeline register being used by SUB.

Clock cycle
1 2 7
sub 62, 61,63 | I e
End- $12, &2, 55
Reg
or $13, 56,352

March 6, 2009 Forwarding 15

Outline of forwarding hardware

= A forwarding unit selects the correct ALU inputs for the EX stage.

— If there is no hazard, the ALU’s operands will come from the register
file, just like before.

— If there is a hazard, the operands will come from either the EX/MEM
or MEM/WB pipeline registers instead.

= The ALU sources will be selected by two new multiplexers, with control
signals named ForwardA and ForwardB.

sub $2, $1, $3 'MReg_:B

and $12, $2, S5 _

Reg

or $13, 56, 52

March 6, 2009 Forwarding

Simplified datapath with forwarding muxes

IF/ID ID/EX EX/MEM MEM/WB
PC ,
i
¥ > 1 >
> HO—> :\ZJ
. Registers f ForwardA
Instruction ~ o —
memory d » O
¢ " 1 Data
—| @o—> 2 memory
! e
ForwardB
Rt e > O
®
Rd
-

March 6, 2009 Forwarding 17

Detecting EX/MEM data hazards

= When do we need to know that anhazard exists? a:‘!“"‘ ""‘“‘“‘ 2

/]
= So how can the hardware determine if a hazard exists? ?/WIMO‘“:

(B fom R == 19/, 85) (4 Bfien. Kes2iE)

e oo [Reg:

lv] Ex and $12, 52, S5

Reg

€ (pos o 20 = 0. KS)

March 6, 2009 Forwarding 18

Detecting EX/MEM data hazards

= So how can the hardware determine if a hazard exists?

= An EX/MEM hazard occurs between the instruction currently in its EX
stage and the previous instruction if:

1. The previous instruction will write to the register file, and
2. The destination is one of the ALU source registers in the EX stage.
= There is an EX/MEM hazard between the two instructions below.

IM Reg_ _> DM : |4 Reg
sub S$2, $1, S3 | | a _} ‘;I

IM Reg_ DM Reg
and $12, $2, S5 — ‘ ,:l |

= Data in a pipeline register can be referenced using a class-like syntax.
For example, ID/EX.RegisterRt refers to the rt field stored in the ID/EX
pipeline.

March 6, 2009 Forwarding 19

EX/MEM data hazard equations

= The first ALU source comes from the pipeline register when necessary.
———

if (EX/MEM.RegWrite = 1 |
and EX/MEM.RegisterRd = ID/EX.RegisterRs)
then ForwardA = 2

—

= The second ALU source is similar.

if (EX/MEM.RegWrite = 1
and EX/MEM.RegisterRd = ID/EX.RegisterRt)
then ForwardB = 2

Sab 4L ,‘° Ii"f

IM Reg| | _}

and $12, 52, $5 _

Reg

March 6, 2009 Forwarding 20

Detecting MEM/WB data hazards

= A MEM/WB hazard may occur between an instruction in the EX stage and
the instruction from two cycles ago.

= One new problem is if a register is updated twice in a row.

add $1, $2, $3
add $1, $1, $4
sub $5, $5, $1

= Register $1 is written by both of the previous instructions; from which
instruction should it receive its value?

add $1, $2, $3 Mﬂm_ }{ p i

add $1’ $1, $4 IM _Reg_ _} ~|:DM_ L Reg

March 6, 2009 Forwarding

Detecting MEM/WB data hazards

= A MEM/WB hazard may occur between an instruction in the EX stage and
the instruction from two cycles ago.

= One new problem is if a register is updated twice in a row.

add
add
sub

= Register $1 is written by both of the previous instructions, but only the

$1, $2, $3
$1, $1, %4
$5, $5, $1

most recent result (from the second ADD) should be forwarded.

add S1, $2, S3

add $1, S1, $4

sub S5, S5, S1

March 6, 2009

Reg

i

}

Reg

Reg

Forwarding

L Reg

DM

Reg

&H

MEM/WB hazard equations

Here is an equation for detecting and handling MEM/WB hazards for the
first ALU source.

if (MEM/WB.RegWrite = 1
and MEM/WB.RegisterRd =_ID/EX.RegisterRs

and (EX/MEM.RegisterRd = |D/EX.RegisterRs or EX/MEM.RegWrite = O! I

then ForwardA = 1

The second ALU operand is handled similarly.

if (MEM/WB.RegWrite = 1

and MEM/WB.RegisterRd = ID/EX.RegisterRt

and (EX/MEM.RegisterRd = ID/EX.RegisterRt or EX/MEM.RegWrite = 0)
then ForwardB = 1

March 6, 2009 Forwarding 23

Simplified datapath with forwarding

PC

A 4

Instruction
memory

March 6, 2009

\ 4

Registers

ID/EX

Rt

EX/MEM

n

> 1 >

12)

4 ForwardA >

ALU

» O |

i ’ Data
¢ " 2 memory

MEM/WB

.

ForwardB

Rd

A 4

Rs

A 4

ID/EX.

\ 4

RegisterRt

» O
> 1

-

»

N Unit

ID/EX.
RegisterRs

| Forwarding

\

&

»

EX/MEM.RegWrife

EX/MEM.RegisterRd

MEM/WB.RegisterRd 4

Al

MEM/WB.RegWrijte

Forwarding

24

The forwarding unit

» The forwarding unit has several control signals as inputs.

ID/EX.RegisterRs EX/MEM.RegisterRd MEM/WB.RegisterRd
ID/EX.RegisterRt EX/MEM.RegWrite MEM/WB.RegWrite

(The two RegWrite signals are not shown in the diagram, but they come
from the control unit.)

» The fowarding unit outputs are selectors for the ForwardA and ForwardB
multiplexers attached to the ALU. These outputs are generated from the
inputs using the equations on the previous pages.

= Some new buses route data from pipeline registers to the new muxes.

March 6, 2009 Forwarding 25

Example

sub $2, $1, $3

and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
SW $15, 100($2)

= Assume again each register initially contains its number plus 100.
— After the first instruction, $2 should contain -2 (101 - 103).
— The other instructions should all use -2 as one of their operands.

= We’ll try to keep the example short.

— Assume no forwarding is needed except for register S2.
— We'll skip the first two cycles, since they’re the same as before.

March 6, 2009 Forwarding 26

Clock cycle 3

IF: or $13, $6, $2 ID: and $12, $2, $5 EX: sub $2, $1, $3
IF/ID ID/EX EX/MEM MEM/WB
PC
101 72
> 2 102 [" 0 409 \
- » 1 >
. Registers T—O >
Instruction - 103 /N ALU|
memory 7l X 105 > » O 103 g ’
R L 1 > 1 :/-2 Data
» 2
X W, memory
5 (Rt) 0 [> >
> ® » 0 o
12 (Rd) 2 >
» : 1 .
2 (Rs) - ID/EX. EX/MEM.RegisterRd
L | RegisterR{ L
4)
3 Forwarding
Unit
> ®
IDIEX. 1 N~—— / MEM/WB.RegisterRd
RegisterRs
S
March 6, 2009 Forwarding 27

Clock cycle 4: forwarding $2 from EX/MEM

IF: add $14, $2,$2 | ID: or $13, $6, $2 EX: and $12, $2, $5 . MEM: sub $2, $1, $3
IF/ID ID/EX EX/MEM MEM/WB
PC
N
1 ° 106 ; 2 \
- < >
—> " 2 [2
v 2 _/
Instruction - Registers 105 /N > ALU| -2
memory 7l X 102 > » O 105 . b ¢ '
¢ » 1 :/104 Data
=i [» 2
X W, memory
2 (Rt) 0 o\ o —
> ® » 0 12
13 (Rd) 12 >
» : 1 .
6 (Rs) - ID/EX. EX/MEM.RegisterRd

L | RegisterR{ | L
L(\A

| Forwarding
Unit

5
X) ®
— :
ID/EX@ MEM/WB.RegisterRd
RegisterRs

March 6, 2009 Forwarding 28

Clock cycle 5: forwarding $2 from MEM/WB

IF: sw $15, 100($2) ID: add $14, $2, $2 EX: or $13, $6, $2 MEM: and $12, $2, $5 WB: sub
%2, %1,%3
IF/ID ID/EX EX/MEM MEM/WB
PC
106 /)
g 2 " O 406 \
~ — < >
N » 2
-—>
v 2 v
. Registers T—O >
Instruction - ~ ALU| 104
memory "2 -2 > 0 > y ——
— 2| ¢) | / N Data
- . ¥ 2
-l &, memory X
> > > >
) 2
2 (Rt > >
(RY > ® » O 13 | g " 0
14 (Rd) 13 >
» : 1 .
2 (Rs) - ID/EX. EX/MEM.RegisterRd 2
L - RegisterRt | L |
(" Y 12
C:j Forwarding
K Unit
IDIEX. 6 o/ @ MEM/WB.RegisterRd
RegisterRs

104

March 6, 2009 Forwarding 29

Lots of data hazards

= The first data hazard occurs during cycle 4.

— The forwarding unit notices that the ALU’s first source register for the
AND is also the destination of the SUB instruction.

— The correct value is forwarded from the EX/MEM register, overriding
the incorrect old value still in the register file.

= A second hazard occurs during clock cycle 5.
— The ALU’s second source (for OR) is the SUB destination again.

— This time, the value has to be forwarded from the MEM/WB pipeline
register instead.

» There are no other hazards involving the SUB instruction.
— During cycle 5, SUB writes its result back into register $2.

— The ADD instruction can read this new value from the register file in
the same cycle.

March 6, 2009 Forwarding 30

Complete pipelined datapath...so far

ID/EX
W EX/MEM
> Control M wi MEM/WB
IF/ID EX >\ S
PC
&—» Read Read > ;/E)\
v register 1 data 1 N >
Addr Instr) |- » Read ;@ ALU
register 2 t Zero >
Write Read R ~/E)\ ALUSrc Result fp| || Address
Instruction "l register data 2 Y Y
memory ® > 1 » 0 Data
»| Write Registers ® ¥ o R memory
data \A_/ " 1
> » Write Read > >
® Instr [15 - 0] RegDst data data
Rt ¢ > >
> ® >
I Rd = >
Rs EX/MEM.RegisterRd
|
| Forwarding
R Unit ¢
. MEM/WB.RegisterRd
»

March 6, 2009 Forwarding 31

= Two “easy” cases:

add &4, $2, S3

sw $4, 0(SL)

add $1, $2, $3

sw S, 0(54)

March 6, 2009

What about stores?

Reg

Reg

Reg

Forwarding

Reg

Reg

DM

Reg

Reg

DM

Reg

Store Bypassing: Version 1

IF/ID ID/EX EX/MEM MEM/WB

PC
e » Read Read > » O
v register 1 data 1 > 1
Addr Instr) |- » Read ALU
register 2 Zero >
Write Read ALUSrc ResUlt jup Address
. > - > » 0
Instruction register data 2
memo » Data
y » Write Registers > memory
data
» Write Read > >
)\ Instr [15 - 0] data data 1
Rt R > » 0
i =
Rs g EX/MEM.RegisterRd

s

Forwarding
Unit

Ut

MEM/WB.RegisterRd

March 6, 2009 Forwarding 33

PC

A 4

Addr Instr

Instruction
memory

March 6, 2009

v

> Zero
ALUSTrc Result

k

A 4

A 4

s

Unit

Forwarding

~N

e—» Read Read > ;/(ﬂ
register 1 data 1 » 1 >
—e— » Read » 2
register 2
Write Read R
"l register data 2 Y
» Write Registers
data
Instr [15 - 0]
Rt N
Rd
Rs

A 4

MEM: ad2, $3

EX/MEM

Address

Data
memory

Mrite Read

data data

MEM/WB

\ 4
v

A 4
v

X/MEM.RegisterRd

MEM/WB.RegisterRd

A 4

Forwarding

34

What about stores?

= A harder case:

'.W SJ.; O(Sz) IM Reg

sw 51, 0($4) w

= In what cycle is:
— The load value available?
— The store value needed?

= What do we have to add to the datapath?

March 6, 2009 Forwarding

35

Load/Store Bypassing: Extend the Datapath

IF/ID ID/EX EX/MEM MEM/WR
PC
e » Read Read > :@
v register 1 data 1 > 1 >
Addr Instr) e Read ¥ o ALU
register 2 f > Zero|—»p.
Write Read ;@ ALUSre Result

v

Write Read

Instruction > register data2 [X > 0
memory » Write Registers ® > R
data " 1
s Instr [15 - 0] RegDst f data data|
Rt > >
0 ¢ > » 0
1

*—6
vV VY

®
v Vv

Rd R
Rs . EX/MEM.RegisterRd
|| || y . || ||
- > Forwarding
Sequence : warc
Iw $1, 0($2) >
W $1 ’ O($4) o MEM/WB.RegisterRd
o

March 6, 2009 Forwarding 36

Miscellaneous comments

= Each MIPS instruction writes to at most one register.

— This makes the forwarding hardware easier to design, since there is
only one destination register that ever needs to be forwarded.

= Forwarding is especially important with deep pipelines like the ones in all
current PC processors.

= Section 6.4 of the textbook has some additional material not shown here.

— Their hazard detection equations also ensure that the source register
is not SO, which can never be modified.

— There is a more complex example of forwarding, with several cases
covered. Take a look at it!

March 6, 2009 Forwarding 37

Summary

» |n real code, most instructions are dependent upon other ones.
— This can lead to data hazards in our original pipelined datapath.

— Instructions can’t write back to the register file soon enough for the
next two instructions to read.

= Forwarding eliminates data hazards involving arithmetic instructions.

— The forwarding unit detects hazards by comparing the destination
registers of previous instructions to the source registers of the current
instruction.

— Hazards are avoided by grabbing results from the pipeline registers
before they are written back to the register file.

= Next time we’ll finish up pipelining.
— Forwarding can’t save us in some cases involving lw.
— We still haven’t talked about branches for the pipelined datapath.

VA 4 & 4a

March 6, 2009 Forwarding 38

