How do we evaluate computer architectures?

- Think of 5 characteristics that differentiate computers?
 - Can some processors compute things that others can't?

February 20, 2009

How do we evaluate computer architectures?

- Think of 5 characteristics that differentiate computers?
 - Can some processors compute things that others can't?

February 20, 2009

How do we evaluate computer architectures?

Think of 5 characteristics that differentiate computers?

```
- Memory size (166, 326, 646)
- ISA? compatibility = envilation
- usability, peripherals, praplics
- Size
- pouver consumption (bother) life, $$)
- he-+ dissipation
- reliability
```

Single-Cycle Performance

- Last time we saw a MIPS single-cycle datapath and control unit.
- Today, we'll explore factors that contribute to a processor's execution time, and specifically at the performance of the single-cycle machine.
- Next time, we'll explore how to improve on the single cycle machine's performance using pipelining.

Three Components of CPU Performance

Instructions Executed

- Instructions executed:
 - We are not interested in the static instruction count, or how many lines of code are in a program.
 - Instead we care about the dynamic instruction count, or how many instructions are actually executed when the program runs.
- There are three lines of code below, but the number of instructions executed would be 2001.

li \$a0, 1000 Ostrich: sub \$a0, \$a0, 1 bne \$a0, \$0, Ostrich

- The average number of clock cycles per instruction, or CPI, is a function of the <u>machine and program</u>.
 - The CPI depends on the actual instructions appearing in the program a floating-point intensive application might have a higher CPI than an integer-based program.
 - It also depends on the CPU implementation. For example, a Pentium can execute the same instructions as an older 80486, but faster.
- In CS231, we assumed each instruction took one cycle, so we had CPI = 1.
 - The CPI can be >1 due to memory stalls and slow instructions.
 - The CPI can be <1 on machines that execute more than 1 instruction per cycle (superscalar).

Clock cycle time

- One "cycle" is the minimum time it takes the CPU to do any work.
 - The clock cycle time or clock period is just the length of a cycle.
 - The clock rate, or frequency, is the reciprocal of the cycle time.
- Generally, a higher frequency is better.
- Some examples illustrate some typical frequencies.
 - A 500MHz processor has a cycle time of 2ns.
 - A 2GHz (2000MHz) CPU has a cycle time of just 0.5ns (500ps).

Execution time, again

CPU time_{X,P} = Instructions executed_P * $CPI_{X,P}$ * Clock cycle time_X

The easiest way to remember this is match up the units:

Make things faster by making any component smaller!!

			1 CALIFORNIA	WICE WENINGS	
	Program	Compiler	ISA	Organization	Technology
Instruction Executed					
СРІ					~
Clock Cycle TIme			~		

Often easy to reduce one component by increasing another

Example 1: ISA-compatible processors

- Let's compare the performances two x86-based processors.
 - An 800MHz AMD Duron, with a CPI of 1.2 for an MP3 compressor.
 - A 1GHz Pentium III with a CPI of 1.5 for the same program.
- Compatible processors implement identical instruction sets and will use the same executable files, with the same number of instructions.
- But they implement the ISA differently, which leads to different CPIs.

Example 2: Comparing across ISAs

- Intel's Itanium (IA-64) ISA is designed facilitate executing multiple instructions per cycle. If an Itanium processor achieves an average CPI of .3 (3 instructions per cycle), how much faster is it than a Pentium4 (which uses the x86 ISA) with an average CPI of 1?
 - a) Itanium is three times faster
 - b) Itanium is one third as fast
 - c) Not enough information

The single-cycle design from last time

The example add from last time

Consider the instruction add \$\$4, \$\$t1, \$\$t2.

000000	01001	01010	10100	00000	100000
ор	rs	rt	rd	shamt	func

- Assume \$t1 and \$t2 initially contain 1 and 2 respectively.
- Executing this instruction involves several steps.
 - 1. The instruction word is read from the instruction memory, and the program counter is incremented by 4.
 - 2. The sources \$t1 and \$t2 are read from the register file.
 - 3. The values 1 and 2 are added by the ALU.
 - 4. The result (3) is stored back into \$s4 in the register file.

How the add goes through the datapath

How the add goes through the datapath

Performance of Single-cycle Design

CPU time_{X,P} = Instructions executed_P *
$$CPI_{X,P}$$
 * Clock cycle time_X

T

Edge-triggered state elements

- In an instruction like add \$t1, \$t1, \$t2, how do we know \$t1 is not updated until after its original value is read?
- We'll assume that our state elements are positive edge triggered, and are updated only on the positive edge of a clock signal.
 - The register file and data memory have explicit write control signals, RegWrite and MemWrite. These units can be written to only if the control signal is asserted and there is a positive clock edge.
 - In a single-cycle machine the PC is updated on each clock cycle, so we don't bother to give it an explicit write control signal.

The datapath and the clock

- 1. On a positive clock edge, the PC is updated with a new address.
- 2. A new instruction can then be loaded from memory. The control unit sets the datapath signals appropriately so that
 - registers are read,
 - ALU output is generated,
 - data memory is read or written, and
 - branch target addresses are computed.
- 3. Several things happen on the *next* positive clock edge.
 - The register file is updated for arithmetic or lw instructions.
 - Data memory is written for a sw instruction.
 - The PC is updated to point to the next instruction.
- In a single-cycle datapath everything in Step 2 must complete within one clock cycle, before the next positive clock edge.

How long is that clock cycle?

Compute the longest path in the add instruction

The slowest instruction...

- If all instructions must complete within one clock cycle, then the cycle time has to be large enough to accommodate the *slowest* instruction.
- For example, lw \$t0, -4(\$sp) is the slowest instruction needing ns.
 - Assuming the circuit latencies below.

The slowest instruction...

- If all instructions must complete within one clock cycle, then the cycle time has to be large enough to accommodate the slowest instruction.
- For example, lw \$t0, -4(\$sp) needs 8ns, assuming the delays shown here.

reading the instruction memory
reading the base register \$sp
computing memory address \$sp-4
reading the data memory
storing data back to \$t0

2ns
2ns
2ns
1ns

...determines the clock cycle time

- If we make the cycle time 8ns then every instruction will take 8ns, even if they don't need that much time.
- For example, the instruction add \$s4, \$t1, \$t2 really needs just 6ns.

reading the instruction memory reading registers \$t1 and \$t2 computing \$t1 + \$t2 storing the result into \$s0

How bad is this?

- With these same component delays, a sw instruction would need 7ns, and beq would need just 5ns.
- Let's consider the gcc instruction mix from p. 189 of the textbook.

Instruction	Frequency		
Arithmetic	48%		
Loads	22%		
Stores	11%		
Branches	19 %		

- With a single-cycle datapath, each instruction would require 8ns.
- But if we could execute instructions as fast as possible, the average time per instruction for gcc would be:

$$(48\% \times 6ns) + (22\% \times 8ns) + (11\% \times 7ns) + (19\% \times 5ns) = 6.36ns$$

The single-cycle datapath is about 1.26 times slower!

It gets worse...

- We've made <u>very</u> optimistic assumptions about memory latency:
 - Main memory accesses on modern machines is >50ns.
 - For comparison, an ALU on an AMD Opteron takes ~0.3ns.
- Our worst case cycle (loads/stores) includes 2 memory accesses
 - A modern single cycle implementation would be stuck at <10Mhz.
 - Caches will improve common case access time, not worst case.
- Tying frequency to worst case path violates first law of performance!!
 - "Make the common case fast" (we'll revisit this often)

Summary

- Performance is one of the most important criteria in judging systems.
 - Here we'll focus on Execution time.
- Our main performance equation explains how performance depends on several factors related to both hardware and software.

CPU time_{X,P} = Instructions executed_P * $CPI_{X,P}$ * Clock cycle time_X

- It can be hard to measure these factors in real life, but this is a useful guide for comparing systems and designs.
- A single-cycle CPU has two main disadvantages.
 - The cycle time is limited by the worst case latency.
 - It isn't efficiently using its hardware.
- Next time, we'll see how this can be rectified with pipelining.

