
February 20, 2009 1

How do we evaluate computer architectures?

  Think of 5 characteristics that differentiate computers?
—  Can some processors compute things that others can’t?

February 20, 2009 2

How do we evaluate computer architectures?

  Think of 5 characteristics that differentiate computers?
—  Can some processors compute things that others can’t?

February 20, 2009 3

How do we evaluate computer architectures?

  Think of 5 characteristics that differentiate computers?

February 20, 2009 ©2006 Craig Zilles (derived from
slides by Howard Huang)

4

Single-Cycle Performance

  Last time we saw a MIPS single-cycle datapath and control unit.
  Today, we’ll explore factors that contribute to a processor’s execution

time, and specifically at the performance of the single-cycle machine.
  Next time, we’ll explore how to improve on the single cycle machine’s

performance using pipelining.

February 20, 2009 Performance 5

Three Components of CPU Performance

Cycles Per Instruction

CPU timeX,P = Instructions executedP * CPIX,P * Clock cycle timeX

February 20, 2009 Performance 6

  Instructions executed:
—  We are not interested in the static instruction count, or how many

lines of code are in a program.
—  Instead we care about the dynamic instruction count, or how many

instructions are actually executed when the program runs.
  There are three lines of code below, but the number of instructions

executed would be 2001.

 li $a0, 1000
 Ostrich: sub $a0, $a0, 1
 bne $a0, $0, Ostrich

Instructions Executed

February 20, 2009 Performance 7

  The average number of clock cycles per instruction, or CPI, is a function
of the machine and program.
—  The CPI depends on the actual instructions appearing in the program—

a floating-point intensive application might have a higher CPI than an
integer-based program.

—  It also depends on the CPU implementation. For example, a Pentium
can execute the same instructions as an older 80486, but faster.

  In CS231, we assumed each instruction took one cycle, so we had CPI = 1.
—  The CPI can be >1 due to memory stalls and slow instructions.
—  The CPI can be <1 on machines that execute more than 1 instruction

per cycle (superscalar).

CPI

February 20, 2009 Performance 8

  One “cycle” is the minimum time it takes the CPU to do any work.
—  The clock cycle time or clock period is just the length of a cycle.
—  The clock rate, or frequency, is the reciprocal of the cycle time.

  Generally, a higher frequency is better.
  Some examples illustrate some typical frequencies.

—  A 500MHz processor has a cycle time of 2ns.
—  A 2GHz (2000MHz) CPU has a cycle time of just 0.5ns (500ps).

Clock cycle time

February 20, 2009 Performance 9

CPU timeX,P = Instructions executedP * CPIX,P * Clock cycle timeX

  The easiest way to remember this is match up the units:

  Make things faster by making any component smaller!!

  Often easy to reduce one component by increasing another

Execution time, again

Seconds
=

Instructions
*

Clock cycles
*

Seconds

Program Program Instructions Clock cycle

Program Compiler ISA Organization Technology

Instruction
Executed

CPI

Clock Cycle
TIme

February 20, 2009 Performance 10

  Let’s compare the performances two x86-based processors.
—  An 800MHz AMD Duron, with a CPI of 1.2 for an MP3 compressor.
—  A 1GHz Pentium III with a CPI of 1.5 for the same program.

  Compatible processors implement identical instruction sets and will use
the same executable files, with the same number of instructions.

  But they implement the ISA differently, which leads to different CPIs.

 CPU timeAMD,P = InstructionsP * CPIAMD,P * Cycle timeAMD

 =
 =

 CPU timeP3,P = InstructionsP * CPIP3,P * Cycle timeP3

 =
 =

Example 1: ISA-compatible processors

February 20, 2009 Performance 11

Example 2: Comparing across ISAs

  Intel’s Itanium (IA-64) ISA is designed facilitate executing multiple
instructions per cycle. If an Itanium processor achieves an average CPI
of .3 (3 instructions per cycle), how much faster is it than a Pentium4
(which uses the x86 ISA) with an average CPI of 1?

a)  Itanium is three times faster
b)  Itanium is one third as fast
c)  Not enough information

February 20, 2009 Multicycle datapath 12

The single-cycle design from last time

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

A control unit (not
shown) generates all
the control signals

from the instruction’s
“op” and “func” fields.

February 20, 2009 Multicycle datapath 13

The example add from last time

  Consider the instruction add $s4, $t1, $t2.

  Assume $t1 and $t2 initially contain 1 and 2 respectively.
  Executing this instruction involves several steps.

1.  The instruction word is read from the instruction memory, and the
program counter is incremented by 4.

2.  The sources $t1 and $t2 are read from the register file.
3.  The values 1 and 2 are added by the ALU.
4.  The result (3) is stored back into $s4 in the register file.

000000 01001 01010 10100 00000 100000

op rs rt rd shamt func

February 20, 2009 Multicycle datapath 14

How the add goes through the datapath

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

February 20, 2009 Multicycle datapath 15

10100

I [15 - 11]

How the add goes through the datapath

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21] 01001

I [20 - 16] 01010

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

00...01

00...10

00...11

PC+4

February 20, 2009 Performance 16

Performance of Single-cycle Design

CPU timeX,P = Instructions executedP * CPIX,P * Clock cycle timeX

February 20, 2009 Multicycle datapath 17

Edge-triggered state elements

  In an instruction like add $t1, $t1, $t2, how do we know
$t1 is not updated until after its original value is read?

  We’ll assume that our state elements are positive edge
triggered, and are updated only on the positive edge of
a clock signal.
—  The register file and data memory have explicit write

control signals, RegWrite and MemWrite. These units
can be written to only if the control signal is asserted
and there is a positive clock edge.

—  In a single-cycle machine the PC is updated on each
clock cycle, so we don’t bother to give it an explicit
write control signal.

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

PC

February 20, 2009 Multicycle datapath 18

The datapath and the clock

1.  On a positive clock edge, the PC is updated with a new address.
2.  A new instruction can then be loaded from memory. The control unit sets

the datapath signals appropriately so that
—  registers are read,
—  ALU output is generated,
—  data memory is read or written, and
—  branch target addresses are computed.

3.  Several things happen on the next positive clock edge.
—  The register file is updated for arithmetic or lw instructions.
—  Data memory is written for a sw instruction.
—  The PC is updated to point to the next instruction.

  In a single-cycle datapath everything in Step 2 must complete within one
clock cycle, before the next positive clock edge.

How long is that clock cycle?

February 20, 2009 Multicycle datapath 19

I [15 - 11]

Compute the longest path in the add instruction

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

PC+4

2 ns

2 ns

1 ns
0 ns 0 ns

2 ns

2 ns

2 ns

0 ns

0 ns

February 20, 2009 Multicycle datapath 20

The slowest instruction...

  If all instructions must complete within one clock cycle, then the cycle
time has to be large enough to accommodate the slowest instruction.

  For example, lw $t0, –4($sp) is the slowest instruction needing __ns.
—  Assuming the circuit latencies below.

0
M
u
x
1

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

1
M
u
x
0

Sign
extend

0
M
u
x
1

Result

Zero
ALU

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers 2 ns

2 ns

2 ns

1 ns 0 ns

0 ns

0 ns

0 ns

February 20, 2009 Multicycle datapath 21

The slowest instruction...

  If all instructions must complete within one clock cycle, then the cycle
time has to be large enough to accommodate the slowest instruction.

  For example, lw $t0, –4($sp) needs 8ns, assuming the delays shown here.

0
M
u
x
1

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

1
M
u
x
0

Sign
extend

0
M
u
x
1

Result

Zero
ALU

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers 2 ns

2 ns

2 ns

1 ns 0 ns

0 ns

0 ns

0 ns

8ns

reading the instruction memory 2ns
reading the base register $sp 1ns
computing memory address $sp-4 2ns
reading the data memory 2ns
storing data back to $t0 1ns

February 20, 2009 Multicycle datapath 22

...determines the clock cycle time

  If we make the cycle time 8ns then every instruction will take 8ns, even
if they don’t need that much time.

  For example, the instruction add $s4, $t1, $t2 really needs just 6ns.

0
M
u
x
1

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

1
M
u
x
0

Sign
extend

0
M
u
x
1

Result

Zero
ALU

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers 2 ns

2 ns

2 ns

1 ns 0 ns

0 ns

0 ns

0 ns

 6 ns

reading the instruction memory 2 ns
reading registers $t1 and $t2 1 ns
computing $t1 + $t2 2 ns
storing the result into $s0 1 ns

February 20, 2009 Multicycle datapath 23

How bad is this?

  With these same component delays, a sw instruction would need 7ns, and
beq would need just 5ns.

  Let’s consider the gcc instruction mix from p. 189 of the textbook.

  With a single-cycle datapath, each instruction would require 8ns.
  But if we could execute instructions as fast as possible, the average time

per instruction for gcc would be:

(48% x 6ns) + (22% x 8ns) + (11% x 7ns) + (19% x 5ns) = 6.36ns

  The single-cycle datapath is about 1.26 times slower!

Instruction Frequency

Arithmetic 48%
Loads 22%
Stores 11%

Branches 19%

February 20, 2009 Multicycle datapath 24

It gets worse...

  We’ve made very optimistic assumptions about memory latency:
—  Main memory accesses on modern machines is >50ns.

•  For comparison, an ALU on an AMD Opteron takes ~0.3ns.
  Our worst case cycle (loads/stores) includes 2 memory accesses

—  A modern single cycle implementation would be stuck at <10Mhz.
—  Caches will improve common case access time, not worst case.

  Tying frequency to worst case path violates first law of performance!!
—  “Make the common case fast” (we’ll revisit this often)

February 20, 2009 Multicycle datapath 25

Summary

  Performance is one of the most important criteria in judging systems.
—  Here we’ll focus on Execution time.

  Our main performance equation explains how performance depends on
several factors related to both hardware and software.

 CPU timeX,P = Instructions executedP * CPIX,P * Clock cycle timeX

  It can be hard to measure these factors in real life, but this is a useful
guide for comparing systems and designs.

  A single-cycle CPU has two main disadvantages.
—  The cycle time is limited by the worst case latency.
—  It isn’t efficiently using its hardware.

  Next time, we’ll see how this can be rectified with pipelining.

