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How do we evaluate computer architectures? 

  Think of 5 characteristics that differentiate computers? 
—  Can some processors compute things that others can’t?  
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Single-Cycle Performance 

  Last time we saw a MIPS single-cycle datapath and control unit. 
  Today, we’ll explore factors that contribute to a processor’s execution 

time, and specifically at the performance of the single-cycle machine. 
  Next time, we’ll explore how to improve on the single cycle machine’s 

performance using pipelining. 
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Three Components of CPU Performance 

Cycles Per Instruction 

CPU timeX,P  =  Instructions executedP * CPIX,P * Clock cycle timeX 
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  Instructions executed: 
—  We are not interested in the static instruction count, or how many 

lines of code are in a program. 
—  Instead we care about the dynamic instruction count, or how many 

instructions are actually executed when the program runs. 
  There are three lines of code below, but the number of instructions 

executed would be 2001. 

   li  $a0, 1000 
  Ostrich:  sub  $a0, $a0, 1 
   bne  $a0, $0, Ostrich 

Instructions Executed 
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  The average number of clock cycles per instruction, or CPI, is a function 
of the machine and program. 
—  The CPI depends on the actual instructions appearing in the program—

a floating-point intensive application might have a higher CPI than an 
integer-based program. 

—  It also depends on the CPU implementation. For example, a Pentium 
can execute the same instructions as an older 80486, but faster. 

  In CS231, we assumed each instruction took one cycle, so we had CPI = 1. 
—  The CPI can be >1 due to memory stalls and slow instructions. 
—  The CPI can be <1 on machines that execute more than 1 instruction 

per cycle (superscalar). 

CPI 
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  One “cycle” is the minimum time it takes the CPU to do any work. 
—  The clock cycle time or clock period is just the length of a cycle. 
—  The clock rate, or frequency, is the reciprocal of the cycle time. 

  Generally, a higher frequency is better. 
  Some examples illustrate some typical frequencies. 

—  A 500MHz processor has a cycle time of 2ns. 
—  A 2GHz (2000MHz) CPU has a cycle time of just 0.5ns (500ps). 

Clock cycle time 
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CPU timeX,P  =  Instructions executedP * CPIX,P * Clock cycle timeX 

  The easiest way to remember this is match up the units: 

  Make things faster by making any component smaller!! 

  Often easy to reduce one component by increasing another 

Execution time, again 

Seconds 
= 

Instructions 
* 

Clock cycles 
* 

Seconds 

Program Program Instructions Clock cycle 

Program Compiler ISA Organization Technology 

Instruction 
Executed 

CPI 

Clock Cycle 
TIme 
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  Let’s compare the performances two x86-based processors. 
—  An 800MHz AMD Duron, with a CPI of 1.2 for an MP3 compressor. 
—  A 1GHz Pentium III with a CPI of 1.5 for the same program. 

  Compatible processors implement identical instruction sets and will use 
the same executable files, with the same number of instructions. 

  But they implement the ISA differently, which leads to different CPIs. 

     CPU timeAMD,P  = InstructionsP * CPIAMD,P * Cycle timeAMD 

   =  
   =  

   CPU timeP3,P  = InstructionsP * CPIP3,P * Cycle timeP3 

   =  
   =  

Example 1: ISA-compatible processors 
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Example 2: Comparing across ISAs 

  Intel’s Itanium (IA-64) ISA is designed facilitate executing multiple 
instructions per cycle.  If an Itanium processor achieves an average CPI 
of .3 (3 instructions per cycle), how much faster is it than a Pentium4 
(which uses the x86 ISA) with an average CPI of 1? 

a)  Itanium is three times faster 
b)  Itanium is one third as fast 
c)  Not enough information 
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The single-cycle design from last time 
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shown) generates all 
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The example add from last time 

  Consider the instruction add $s4, $t1, $t2. 

  Assume $t1 and $t2 initially contain 1 and 2 respectively. 
  Executing this instruction involves several steps. 

1.  The instruction word is read from the instruction memory, and the 
program counter is incremented by 4. 

2.  The sources $t1 and $t2 are read from the register file. 
3.  The values 1 and 2 are added by the ALU. 
4.  The result (3) is stored back into $s4 in the register file. 

000000 01001 01010 10100 00000 100000 

op rs rt rd shamt func 
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How the add goes through the datapath 
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10100 
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How the add goes through the datapath 
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Performance of Single-cycle Design 

CPU timeX,P  =  Instructions executedP * CPIX,P * Clock cycle timeX 
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Edge-triggered state elements 

  In an instruction like add $t1, $t1, $t2, how do we know 
$t1 is not updated until after its original value is read? 

  We’ll assume that our state elements are positive edge 
triggered, and are updated only on the positive edge of 
a clock signal. 
—  The register file and data memory have explicit write 

control signals, RegWrite and MemWrite. These units 
can be written to only if the control signal is asserted 
and there is a positive clock edge. 

—  In a single-cycle machine the PC is updated on each 
clock cycle, so we don’t bother to give it an explicit 
write control signal. 
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The datapath and the clock 

1.  On a positive clock edge, the PC is updated with a new address. 
2.  A new instruction can then be loaded from memory. The control unit sets 

the datapath signals appropriately so that 
—  registers are read, 
—  ALU output is generated, 
—  data memory is read or written, and 
—  branch target addresses are computed. 

3.  Several things happen on the next positive clock edge. 
—  The register file is updated for arithmetic or lw instructions. 
—  Data memory is written for a sw instruction. 
—  The PC is updated to point to the next instruction. 

  In a single-cycle datapath everything in Step 2 must complete within one 
clock cycle, before the next positive clock edge. 

How long is that clock cycle? 
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I [15 - 11] 

Compute the longest path in the add instruction 
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The slowest instruction... 

  If all instructions must complete within one clock cycle, then the cycle 
time has to be large enough to accommodate the slowest instruction. 

  For example, lw $t0, –4($sp) is the slowest instruction needing __ns. 
—  Assuming the circuit latencies below. 
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The slowest instruction... 

  If all instructions must complete within one clock cycle, then the cycle 
time has to be large enough to accommodate the slowest instruction. 

  For example, lw $t0, –4($sp) needs 8ns, assuming the delays shown here. 
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reading the instruction memory  2ns 
reading the base register $sp  1ns 
computing memory address $sp-4  2ns 
reading the data memory  2ns 
storing data back to $t0  1ns 
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...determines the clock cycle time 

  If we make the cycle time 8ns then every instruction will take 8ns, even 
if they don’t need that much time. 

  For example, the instruction add $s4, $t1, $t2 really needs just 6ns. 
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  6 ns 

reading the instruction memory  2 ns 
reading registers $t1 and $t2  1 ns 
computing $t1 + $t2  2 ns 
storing the result into $s0  1 ns 
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How bad is this? 

  With these same component delays, a sw instruction would need 7ns, and 
beq would need just 5ns. 

  Let’s consider the gcc instruction mix from p. 189 of the textbook. 

  With a single-cycle datapath, each instruction would require 8ns. 
  But if we could execute instructions as fast as possible, the average time 

per instruction for gcc would be: 

(48% x 6ns) + (22% x 8ns) + (11% x 7ns) + (19% x 5ns) = 6.36ns 

  The single-cycle datapath is about 1.26 times slower! 

Instruction Frequency 

Arithmetic 48% 
Loads 22% 
Stores 11% 

Branches 19% 
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It gets worse... 

  We’ve made very optimistic assumptions about memory latency: 
—  Main memory accesses on modern machines is >50ns. 

•  For comparison, an ALU on an AMD Opteron takes ~0.3ns. 
  Our worst case cycle (loads/stores) includes 2 memory accesses 

—  A modern single cycle implementation would be stuck at <10Mhz. 
—  Caches will improve common case access time, not worst case. 

  Tying frequency to worst case path violates first law of performance!! 
—  “Make the common case fast” (we’ll revisit this often) 
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Summary 

  Performance is one of the most important criteria in judging systems. 
—  Here we’ll focus on Execution time. 

  Our main performance equation explains how performance depends on 
several factors related to both hardware and software. 

  CPU timeX,P = Instructions executedP * CPIX,P * Clock cycle timeX 

  It can be hard to measure these factors in real life, but this is a useful 
guide for comparing systems and designs. 

  A single-cycle CPU has two main disadvantages. 
—  The cycle time is limited by the worst case latency. 
—  It isn’t efficiently using its hardware. 

  Next time, we’ll see how this can be rectified with pipelining. 


