A Timely Question.

= Most modern operating systems pre-emptively schedule programs.

— If you are simultaneously running two programs A and B, the O/S will
periodically switch between them, as it sees fit.

— Specifically, the O/S will:
e Stop A from running

« Copy A’s register values to memory A
« Copy B’s register values from memory L
o Start B running LW ik}‘ .
7 Jro N
= How does the O/S stop program A?

1n’\¢fr ‘1(’\3 DISC— S._‘;Q;"Or)
Tﬂ éyua o-m——g”‘L

February 13, 2009

I/0 Programming, Interrupts, and Exceptions

= Most I/0 requests are made by applications or the operating system, and
involve moving data between a peripheral device and main memory.

- ’_'Lhere are two main ways that programs communicate with devices.
— Memory-mapped |/Q
_— Isolated 1/0 (which is similar, but we won’t discuss)

= There are also several ways of managing data transfers between devices
and main memory.

— Programmed 1/0
— Interrupt-driven 1/0
— Direct memory access
» Interrupt-driven |I/0 motivates a discussion about:
— Interrupts
— Exceptions
— and how to program them...

February 13, 2009 ©2003-2006 Craig Zilles (derived
from slides by Howard Huang)

Communicating with devices

= Most devices can be considered as

RADEON MOBILITY 7500 (Omega 2.4.07a) Properties [(X]

memories, with an “address” for | General | Driver | Resources |
reading or Writing. g RADEON MOBILITY 7500 (Omega 2.4.07a)
= Many instruction sets often make this Resouce selings
1 ~1 Resource type Settin »
analogy expllc!t. To tran;fer data to e [Selte_
or from a particular device, the CPU W10 Fonge D30 ADF
. W Memo Bange 00040000 - D00BFFFF v
can access special addresses. ‘
= Here you can see a video card can be
accessed via addresses 3B0-3BB,
3C0-3DF and AOOOO-BFFFF. Conflcting device It
No conflicts.
= There are two ways these addresses
can be accessed.
[0K][Cancel
February 13, 2009 /0 Programming, Interrupts and 3

Exceptions

Memory-mapped I/0

With memory-mapped |/0, one address space is divided
into two parts.

— Some addresses refer to physical memory locations.
— Other addresses actually reference peripherals.

= For example, my old Apple lle had a 16-bit address bus
which could access a whole 64KB of memory.

— Addresses CO00-CFFF in hexadecimal were not part of
memory, but were used to access |/0 devices.

— All the other addresses did reference main memory.

» The I/0 addresses are shared by many peripherals. In the
Apple lle, for instance, C010 is attached to the keyboard
while C030 goes to the speaker.

= Some devices may need several |/0 addresses.

February 13, 2009 /0 Programming, Interrupts and
Exceptions

Memory

/0

Memory

FFFF

] D000
C000

0000

L foefmtey

Programming memory-mapped I/0
r~Control : ® P . ¢

Address ® ® o o

S 1 N1 1 N 1

CPU Memory Hard disks CD-ROM Network Display

» To send data to a device, the CPU writes to the appropriate |/0 address.
The address and data are then transmitted along the bus.

= Each device has to monitor the address bus to see if it is the target.

— The Apple lle main memory ignores any transactions whose address
begins with bits 1100 (addresses CO00-CFFF).

— The speaker only responds when C030 appears on the address bus.

February 13, 2009 /0 Programming, Interrupts and 5
Exceptions

Isolated 1/0

= Another approach is to support separate address FFFFFFFF
spaces for memory and 1/0 devices, with special
instructions that access the 1/0 space.

= For instance, 8086 machines have a 32-bit address

space.
— Regular instructions like MOV reference RAM. Main
— The special instructions IN and OUT access a memory

separate 64KB |/0 address space.

— Address 0000FFFF could refer to either main

memory or an |/0 device, depending on what
instruction was used.

00000000

Y VAN
OO0OFFFF

1/0
devices

00000000

February 13, 2009 /0 Programming, Interrupts and 6
Exceptions

Comparing memory-mapped and isolated 1/0

= Memory-mapped |I/0 with a single address space is nice because the same
instructions that access memory can also access |/0 devices.

— For example, issuing MIPS sw instructions to the proper addresses can
store data to an external device.

— However, part of the address space is taken by I/0 devices, reducing
the amount of main memory that’s accessible.

= With isolated |I/0, special instructions are used to access devices.
— This is less flexible for programming.

— On the other hand, 1/0 and memory addresses are kept separate, so
the amount of accessible memory isn’t affected by I/0 devices.

February 13, 2009 /0 Programming, Interrupts and 7
Exceptions

Transferring data with_programmed 1/0

» The second important question is how data is
transferred between a device and memory.

» Under programmed |/0, it’s all up to a user
program or the operating system.

— The CPU makes a request and then waits for

the device to become ready (e.g., to move
the disk head).

— Buses are only 32-64 bits wide, so the last
few steps are repeated for large transfers.
= A lot of CPU time is needed for this!
— If the device is slow the CPU might have to

wait a long time—as we will see, most
devices are slow compared to modern CPUs.

— The CPU is also involved as a middleman for
the actual data transfer.

(This CPU flowchart is based on one from Computer
Organization and Architecture by William Stallings.)

February 13, 2009 /0 Programming, Interrupts and
Exceptions

CPU sends read
request to device <

Not ready

CPU waits
for device

1 Ready

CPU reads word
from device

CPU writes word
to main memory

No @

Yes

Can you hear me now? Can you hear me now?

= Continually checking to see if a device is ready
is called polling.

* |t’s not a particularly efficient use of the CPU.

— The CPU repeatedly asks the device if it’s
ready or not.
— The processor has to ask often enough to

ensure that it doesn’t miss anything, which
means it can’t do much else while waiting.

= An analogy is waiting for your car to be fixed.

— You could call the mechanic every minute,
but that takes up all your time.

— A better idea is to wait for the ‘mechanic to

call you.
=

February 13, 2009 /0 Programming, Interrupts and
Exceptions

CPU sends read
request to device

Not ready

CPU waits
for device

-1k

[Eommm

Interrupt-driven 1/0

» [nterrupt-driven |/0 attacks the problem of the CPU sends read
processor having to wait for a slow device. request to device
» |nstead of waiting, the CPU continues with other l
calculations. The device interrupts the processor
S P CPU does other stuffle—

when the data is ready. -

= The data transfer steps are still the same as with
programmed |/0, and still occupy the CPU. CPU receives interrupt €

CPU reads word
from device

CPU writes word
to main memory

No @

Yes

February 13, 2009 /0 Programming, Interrupts and 10
Exceptions

(Flowchart based on Stallings again.)

Interrupts

» |nterrupts are external events that require the processor’s attention.
— Peripherals and other 1/0 devices may need attention.
— Timer interrupts to mark the passage of time.
= These situations are not errors.
— They happen normally.
— All interrupts are recoverable:

e The interrupted program will need to be resumed after the
interrupt is handled.

= |t is the operating system’s responsibility to do the right thing, such as:
— Save the current state and shut down the hardware devices.
— Find and load the correct data from the hard disk
— Transfer data to/from the 1/0 device, or install drivers.

February 13, 2009 /0 Programming, Interrupts and
Exceptions

11

Exception handling

= Exceptions are typically errors that are detected within the processor.
— The CPU tries to execute an jllegal instruction opcode.
— An arithmetic instruction overflows, or attempts to divide b¥ 0.

— The a load or store cannot complete because it is accessing a virtual
~—% address currently on disk

o we’ll talk about virtual memory later in 232.
= There are two possible ways of resolving these errors.
— If the error is un-recoverable, the operating system kills the program.

— Less serious problems can often be fixed by the O/S or the program
itself.

February 13, 2009 /0 Programming, Interrupts and 12
Exceptions

Instruction Emulation: an exception handling example

» Periodically ISA’s are extended with new instructions

— e.g., SSE, SSE2, etc.
= |f programs are compiled with these new instructions, they will not run
on older implementations (e.g., a Pentium).
— This is not ideal. This is a “forﬁ/ar‘d compatibility” problem.

= Though we can’t change existing hardware, we can add software to
handle these instructions. This is called “emulation”.

February 13, 2009 /0 Programming, Interrupts and 13
Exceptions

Instruction Emulation: an exception handling example

» Periodically ISA’s are extended with new instructions
— e.g., SSE, SSE2, etc.

= |f programs are compiled with these new instructions, they will not run
on older implementations (e.g., a Pentium).

— This is not ideal. This is a “forward compatibility” problem.

= Though we can’t change existing hardware, we can add software to
handle these instructions. This is called “emulation”.

Decode inst in software;

Kernel Return from
Perform it’s functionality 4
User Execute Application » lilegal opcode Execute Application'>

exception

= |t’s slower, but it works. (if you wanted fast, you wouldn’t have a Pentium)

February 13, 2009 /0 Programming, Interrupts and 14
Exceptions

How interrupts/exceptions are handled

= For simplicity exceptions and interrupts are handled the same way.

= When an exception/interrupt occurs, we stop execution and transfer
control to the operating system, which executes an “exception handler”
to decide how it should be processed.

= The exception handler needs to know two things.
— The cause of the exception (e.g., overflow or illegal opcode).

— What instruction was executing when the exception occurred. This
helps the operating system report the error or resume the program.

= This is another example of interaction between software and hardware,
as the cause and current instruction must be supplied to the operating
system by the processor.

February 13, 2009 /0 Programming, Interrupts and 15
Exceptions

MIPS Interrupt Programming

= In order to receive interrupts, the software has to enable them.
— On a MIPS processor, this is done by writing to the Status register.
 Interrupts are enabled by setting bit zero.

e

15 8 5 4 3 2 1 0
\ I FAN J
Interrupt p e "
\ mask) Old Previous Current
\. S N
> & o & o 8
T TS s T
S S - N SN S S Sl
TEISTFITFSEIFEFEL
¥ o ¥ ¢ Sl S |

= MIPS has multiple interrupt levels
— Interrupts for different levels can be selectively enabled.

— To receive an interrupt, it’s bit in the interrupt mask (bits 8-15 of the
Status register) must be set.

 In the Figure, interrupt level 15 is enabled.

February 13, 2009

/0 Programming, Interrupts and
Exceptions

16

MIPS Interrupt Programming

= When an interrupt occurs, the Cause register indicates which one.
— For an exception, the exception code field holds the exception type.

— For an interrupt, the exception code field is 0000 and bits will be set
for pending interrupts.

e The register below shows a pending interrupt at level 15

15 10 5 2
R bbb
Pending Exception

interrupts code

= This information is used by the interrupt handler to know what to do.
— SPIMbot’s controller will need to look at this.
« All the goods are covered in Appendix A.7 of your book.
— And yes, there are six numbers between 10 and 15, inclusive.

February 13, 2009 /0 Programming, Interrupts and 17
Exceptions

User handled exceptions

» The exception handler is generally part of the operating system.
= Sometimes users want to handle their own exceptions:

— e.g., numerical applications can scale values to avoid floating point
overflow/underflow.

— Many tricks that use unmapped pages of virtual memory to avoid run-
time checks.

= Many operating systems provide a mechanism for applications for
handling their exceptions.

— Unix lets you register “signal handler” functions.
= Modern languages like Java provide programmers with language features

to “catch” exceptions.
— This is much cleaner.

——,

February 13, 2009 /0 Programming, Interrupts and 18
Exceptions

Direct memory access

= QOne final method of data transfer is to introduce a
direct memory access, or DMA, controller.

= The DMA controller is a simple processor which does
most of the functions that the CPU would otherwise
have to handle.

— The CPU asks the DMA controller to transfer
data between a device and main memory. After
that, the CPU can continue with other tasks.

— The DMA controller issues requests to the right
|/0 device, waits, and manages the transfers
between the device and main memory.

— Once finished, the DMA controller interrupts the
CPU.

= This is yet another form of parallel processing.

(Flowchart again.)

February 13, 2009 /0 Programming, Interrupts and
Exceptions

CPU sends read
request to DMA
unit

!

CPU does other stuff

CPU receives DMA
interrupt

l

19

Main memory problems

System bus

S SR S SR B

CPU & Memory DMA unit Hard disks CD-ROM Network
cache

= As you might guess, there are some complications with DMA.

— Since both the processor and the DMA controller may need to access
main memory, some form of arbitration is required.

— If the DMA unit writes to a memory location that is also contained in
the cache, the cache and memory could become inconsistent.

= Having the main processor handle all data transfers is less efficient, but
easier from a design standpoint!

February 13, 2009 /0 Programming, Interrupts and 20
Exceptions

