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Question 

  Which of the following are represented by the 
hexadecimal number 0x00494824 ? 

—  the integer   4802596 
—  the string   “$HI” 
—  the float   6.7298704e-39 
—  the instruction   and  $9, $2, $9 
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Answer 

  Which of the following are represented by the 
hexadecimal number 0x00494824 ? 

 Answer: All of them. (See data.s)  They are just 
different interpretations of the same bit patterns. 
  (note: the string representation depends on endianness)  

  Then how does the machine know which interpretation you 
want? 
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Answer 

  Which of the following are represented by the 
hexadecimal number 0x00494824 ? 

 Answer: All of them. (See data.s)  They are just 
different interpretations of the same bit patterns. 
  (note: the string representation depends on endianness)   

  Then how does the machine know which interpretation you 
want? 

 You have to explicitly tell the machine which interpretation you want. 
—  Use an integer load (lw) to interpret them as an int 
—  Use a floating point load (l.s) to interpret them as a float 
—  Use a branch or a jump(bne or j) to interpret them as an instruction 
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Floating-point arithmetic 

  Two’s complement and floating point are the two standard number 
representations. 
—  Floating point greatly simplifies working with large (e.g., 270) and 

small (e.g., 2-17) numbers 
—  Early machines did it in software with “scaling factors” 

  We’ll focus on the IEEE 754 standard for floating-point arithmetic. 
—  How FP numbers are represented 
—  Limitations of FP numbers 
—  FP addition and multiplication 
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Floating-point representation 

  IEEE numbers are stored using a kind of scientific notation. 

± mantissa * 2exponent 

  We can represent floating-point numbers with three binary fields: a sign 
bit s, an exponent field e, and a fraction field f. 

  The IEEE 754 standard defines several different precisions. 
—  Single precision numbers include an 8-bit exponent field and a 23-bit 

fraction, for a total of 32 bits. 
—  Double precision numbers have an 11-bit exponent field and a 52-bit 

fraction, for a total of 64 bits. 

s e f 
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Sign 

  The sign bit is 0 for positive numbers and 1 for negative numbers. 
  But unlike integers, IEEE values are stored in signed magnitude format. 

s e f 
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Mantissa 

  The field f contains a binary fraction. 
  The actual mantissa of the floating-point value is (1 + f). 

—  In other words, there is an implicit 1 to the left of the binary point. 
—  For example, if f is 01101…, the mantissa would be 1.01101… 

  There are many ways to write a number in scientific notation, but there 
is always a unique normalized representation, with exactly one non-zero 
digit to the left of the point.  

0.232 * 103 = 23.2 * 101 = 2.32 * 102 = … 

  A side effect is that we get a little more precision: there are 24 bits in 
the mantissa, but we only need to store 23 of them. 

s e f 
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Exponent 

  The e field represents the exponent as a biased number. 
—  It contains the actual exponent plus 127 for single precision, or the 

actual exponent plus 1023 in double precision. 
—  This would convert all single-precision exponents from -127 to +128 

into unsigned numbers from 0 to 255, and all double-precision 
exponents from -1023 to +1024 into unsigned numbers from 0 to 2047. 

  Two examples with single-precision numbers are shown below. 
—  If the exponent is 4, the e field will be 4 + 127 = 131 (100000112). 
—  If e contains 01011101 (9310), the actual exponent is 93 - 127 = -34. 

  Storing a biased exponent before a normalized mantissa means we can 
compare IEEE values as if they were signed integers. 

s e f 
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Converting an IEEE 754 number to decimal 

  The decimal value of an IEEE number is given by the formula: 

(1 - 2s) * (1 + f) * 2e-bias
 

  Here, the s, f and e fields are assumed to be in decimal. 
—  (1 - 2s) is 1 or -1, depending on whether the sign bit is 0 or 1. 
—  We add an implicit 1 to the fraction field f, as mentioned earlier. 
—  Again, the bias is either 127 or 1023, for single or double precision. 

s e f 
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Converting a decimal number to IEEE 754 

  What is the single-precision representation of 347.625? 

1.  First convert the number to binary: 347.625 = 101011011.1012. 
2.  Normalize the number by shifting the binary point until there is a 

single 1 to the left: 

101011011.101 x 20 =  

3.  The bits to the right of the binary point comprise the fractional field 
f. 

4.  The number of times you shifted gives the exponent. The field e 
should contain: exponent + 127. 

5.  Sign bit: 0 if positive, 1 if negative. 
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Example IEEE-decimal conversion 

  Let’s find the decimal value of the following IEEE number. 

  1  01111100  11000000000000000000000 
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Example IEEE-decimal conversion 

  Let’s find the decimal value of the following IEEE number. 

  1  01111100  11000000000000000000000 

  First convert each individual field to decimal. 
—  The sign bit s is 1. 
—  The e field contains 01111100 = 12410. 

—  The mantissa is 0.11000… = 0.7510. 
  Then just plug these decimal values of s, e and f into our formula. 

(1 - 2s) * (1 + f) * 2e-bias 

  This gives us (1 - 2) * (1 + 0.75) * 2124-127  =  (-1.75 * 2-3)  =  -0.21875. 
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  The smallest and largest possible exponents e=00000000 and e=11111111 
(and their double precision counterparts) are reserved for special values. 

  If the mantissa is always (1 + f), then how is 0 represented? 
—  The fraction field f should be 0000...0000. 
—  The exponent field e contains the value 00000000. 
—  With signed magnitude, there are two zeroes: +0.0 and -0.0. 

  There are representations of positive and negative infinity, which might 
sometimes help with instances of overflow. 
—  The fraction f is 0000...0000. 
—  The exponent field e is set to 11111111. 

  Finally, there is a special “not a number” value, which can handle some 
cases of errors or invalid operations such as 0.0/0.0. 
—  The fraction field f is set to any non-zero value. 
—  The exponent e will contain 11111111.  

Special values 
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Range of single-precision numbers 

What is the smallest positive single-precision value that can be represented?  
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Range of single-precision numbers 

(1 - 2s) * (1 + f) * 2e-127.  

  And the smallest positive non-zero number is 1 * 2-126 = 2-126. 
—  The smallest e is 00000001 (1). 
—  The smallest f is 00000000000000000000000 (0). 

  The largest possible “normal” number is (2 - 2-23) * 2127 = 2128 - 2104. 
—  The largest possible e is 11111110 (254). 
—  The largest possible f is 11111111111111111111111 (1 - 2-23). 

  In comparison, the range of possible 32-bit integers in two’s complement 
are only -231 and (231 - 1) 

  How can we represent so many more values in the IEEE 754 format, even 
though we use the same number of bits as regular integers? 
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  There aren’t more IEEE numbers. 
  With 32 bits, there are 232-1, or about 4 billion, different bit patterns. 

—  These can represent 4 billion integers or 4 billion reals. 
—  But there are an infinite number of reals, and the IEEE format can only 

represent some of the ones from about -2128 to +2128. 
—  Represent same number of values between 2n and 2n+1 as 2n+1 and 2n+2  

  Thus, floating-point arithmetic has “issues” 
—  Small roundoff errors can accumulate with multiplications or 

exponentiations, resulting in big errors. 
—  Rounding errors can invalidate many basic arithmetic principles such 

as the associative law, (x + y) + z = x + (y + z). 
  The IEEE 754 standard guarantees that all machines will produce the same 

results—but those results may not be mathematically correct! 

Finiteness 

2 4 8 16 
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  Even some integers cannot be represented in the IEEE format. 

  int x   = 33554431; 
  float y = 33554431; 
  printf( "%d\n", x ); 
  printf( "%f\n", y ); 

  33554431 
  33554432.000000 

  Some simple decimal numbers cannot be represented exactly in binary to 
begin with.  

0.1010 = 0.0001100110011...2 

Limits of the IEEE representation 
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0.10 

  During the Gulf War in 1991, a U.S. Patriot missile failed to intercept an 
Iraqi Scud missile, and 28 Americans were killed. 

  A later study determined that the problem was caused by the inaccuracy 
of the binary representation of 0.10. 
—  The Patriot incremented a counter once every 0.10 seconds. 
—  It multiplied the counter value by 0.10 to compute the actual time. 

  However, the (24-bit) binary representation of 0.10 actually corresponds 
to 0.099999904632568359375, which is off by 0.000000095367431640625. 

  This doesn’t seem like much, but after 100 hours the time ends up being 
off by 0.34 seconds—enough time for a Scud to travel 500 meters! 

  UIUC Emeritus Professor Skeel wrote a short article about this. 

Roundoff Error and the Patriot Missile. SIAM News, 25(4):11, July 1992. 
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Floating-point addition example 

  To get a feel for floating-point operations, we’ll do an addition example.  
—  To keep it simple, we’ll use base 10 scientific notation. 
—  Assume the mantissa has four digits, and the exponent has one digit. 

  The text shows an example for the addition: 

99.99  +  0.161  =  100.151 

  As normalized numbers, the operands would be written as: 

  9.999 * 101  1.610 * 10-1 
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Steps 1-2: the actual addition 

1.  Equalize the exponents. 
 The operand with the smaller exponent should be rewritten by increasing 
its exponent and shifting the point leftwards. 

1.610 * 10-1 =   

 With four significant digits, this gets rounded to:  

 This can result in a loss of least significant digits—the rightmost 1 in this 
case. But rewriting the number with the larger exponent could result in 
loss of the most significant digits, which is much worse. 

2.  Add the mantissas. 

9.999 * 101 

+ 0.016 * 101 



February 12, 2009 Multiplication and Floating Point 21 

Steps 3-5: representing the result 

3.  Normalize the result if necessary. 

10.015 * 101  =    

 This step may cause the point to shift either left or right, and the 
exponent to either increase or decrease. 

4.  Round the number if needed. 

1.0015 * 102 gets rounded to    

5.  Repeat Step 3 if the result is no longer normalized. 
 We don’t need this in our example, but it’s possible for rounding to add 
digits—for example, rounding 9.9995 yields 10.000. 

Our result is   , or       . The correct answer is 100.151, so we have 
the right answer to four significant digits, but there’s a small error already. 
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Multiplication 

  To multiply two floating-point values, first multiply their magnitudes and 
add their exponents. 

  You can then round and normalize the result, yielding 1.610 * 101. 
  The sign of the product is the exclusive-or of the signs of the operands. 

—  If two numbers have the same sign, their product is positive. 
—  If two numbers have different signs, the product is negative. 

  0 ⊕ 0 = 0  0 ⊕ 1 = 1  1 ⊕ 0 = 1  1 ⊕ 1 = 0 

  This is one of the main advantages of using signed magnitude. 

9.999 * 101 

* 1.610 * 10-1 

16.098 * 100 
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Feedback 

  Write one or more of the following: (name optional) 

1.  What you like about this class so far. 

2.  What we can do to make this class a better learning environment for you. 

3.  Something that we are doing that is detrimental to your learning and 
should stop. 
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The history of floating-point computation 

  In the past, each machine had its own implementation of floating-point 
arithmetic hardware and/or software. 
—  It was impossible to write portable programs that would produce the 

same results on different systems. 
  It wasn’t until 1985 that the IEEE 754 standard was adopted. 

—  Having a standard at least ensures that all compliant machines will 
produce the same outputs for the same program. 
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Floating-point hardware 

  When floating point was introduced in microprocessors, there wasn’t 
enough transistors on chip to implement it. 
—  You had to buy a floating point co-processor (e.g., the Intel 8087) 

  As a result, many ISA’s use separate registers for floating point. 
  Modern transistor budgets enable floating point to be on chip. 

—  Intel’s 486 was the first x86 with built-in floating point (1989) 
  Even the newest ISA’s have separate register files for floating point. 

—  Makes sense from a floor-planning perspective. 
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FPU like co-processor on chip 
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Summary 

  The IEEE 754 standard defines number representations and operations for 
floating-point arithmetic. 

  Having a finite number of bits means we can’t represent all possible real 
numbers, and errors will occur from approximations. 


