Question

• Which of the following are represented by the hexadecimal number 0x00494824?

the integer

4802596

— the string

"\$HI"

— the float

6.7298704e-39

the instruction

and \$9, \$2, \$9

Answer

• Which of the following are represented by the hexadecimal number 0x00494824?

Answer: All of them. (See data.s) They are just different interpretations of the same bit patterns.

(note: the string representation depends on endianness)

Then how does the machine know which interpretation you want?

Answer

• Which of the following are represented by the hexadecimal number 0x00494824?

Answer: All of them. (See data.s) They are just different interpretations of the same bit patterns.

(note: the string representation depends on endianness)

Then how does the machine know which interpretation you want?

You have to explicitly tell the machine which interpretation you want.

- Use an integer load (lw) to interpret them as an int
- Use a floating point load (l.s) to interpret them as a float
- Use a branch or a jump(bne or j) to interpret them as an instruction

Floating-point arithmetic

- Two's complement and floating point are the two standard number representations.
 - Floating point greatly simplifies working with large (e.g., 2^{70}) and small (e.g., 2^{-17}) numbers
 - Early machines did it in software with "scaling factors"
- We'll focus on the IEEE 754 standard for floating-point arithmetic.
 - How FP numbers are represented
 - Limitations of FP numbers
 - FP addition and multiplication

Floating-point representation

IEEE numbers are stored using a kind of scientific notation.

 We can represent floating-point numbers with three binary fields: a sign bit s, an exponent field e, and a fraction field f.

- The IEEE 754 standard defines several different precisions.
 - Single precision numbers include an 8-bit exponent field and a 23-bit fraction, for a total of 32 bits.
 - Double precision numbers have an <u>11-b</u>it exponent field and a <u>52-bit</u> fraction, for a total of 64 bits.

Sign

- The sign bit is 0 for positive numbers and 1 for negative numbers.
- But unlike integers, IEEE values are stored in signed magnitude format.

Mantissa

- The field f contains a binary fraction.
- The actual mantissa of the floating-point value is (1 + f).
 - In other words, there is an implicit 1 to the left of the binary point.
 - For example, if f is <u>01101...</u>, the mantissa would be <u>1.01101</u>...
- There are many ways to write a number in scientific notation, but there is always a *unique* <u>normalized</u> representation, with exactly one non-zero digit to the left of the point.

$$0.232 * 10^3 = 23.2 * 10^1 = 2.32 * 10^2 = ...$$

 A side effect is that we get a little more precision: there are 24 bits in the mantissa, but we only need to store 23 of them.

- The e field represents the exponent as a biased number.
 - It contains the actual exponent plus 127 for single precision, or the actual exponent plus 1023 in double precision.
 - This would convert all single-precision exponents from -127 to +128 into unsigned numbers from 0 to 255, and all double-precision exponents from -1023 to +1024 into unsigned numbers from 0 to 2047.
- Two examples with single-precision numbers are shown below.
 - If the exponent is 4, the e field will be $4 + 127 = 131 (10000011_2)$.
 - If e contains 01011101 (93₁₀), the actual exponent is 93 127 = -34.
- Storing a biased exponent before a normalized mantissa means we can compare IEEE values as if they were signed integers.

Converting an IEEE 754 number to decimal

|--|

The decimal value of an IEEE number is given by the formula:

$$(1 - 2s) * (1 + f) * 2^{e-bias}$$

- Here, the s, f and e fields are assumed to be in decimal.
 - (1 2s) is 1 or -1, depending on whether the sign bit is 0 or 1.
 - We add an implicit 1 to the fraction field f, as mentioned earlier.
 - Again, the bias is either 127 or 1023, for single or double precision.

Converting a decimal number to IEEE 754

- What is the single-precision representation of 347.625?
 - 1. First convert the number to binary: $347.625 = 101011011.101_2$.
 - 2. Normalize the number by shifting the binary point until there is a single 1 to the left:

- 3. The bits to the right of the binary point comprise the fractional field f.
- 5. Sign bit: 0 if positive, 1 if negative.

Example IEEE-decimal conversion

Let's find the decimal value of the following IEEE number.

decimal x L

Example IEEE-decimal conversion

- Let's find the decimal value of the following IEEE number.
- First convert each individual field to decimal.
 - The sign bit s is 1.
 - The e field contains $011111100 = 124_{10}$.
 - The mantissa is $0.11000... = 0.75_{10}$.
- Then just plug these decimal values of s, e and f into our formula.

$$(1 - 2s) * (1 + f) * 2^{e-bias}$$

■ This gives us $(1-2)*(1+0.75)*2^{124-127} = (-1.75*2^{-3}) = -0.21875$.

Special values

- The smallest and largest possible exponents e=00000000 and e=111111111
 (and their double precision counterparts) are reserved for special values.
- If the mantissa is always (1 + f), then how is <u>0</u> represented?
 - The fraction field f should be <u>0000...0000</u>.
 - The exponent field e contains the value 00000000.
 - With signed magnitude, there are two zeroes: +0.0 and -0.0.
- There are representations of positive and negative infinity, which might sometimes help with instances of overflow.
 - The fraction f is 0000...0000.
 - The exponent field e is set to 111111111.
- Finally, there is a special "not a number" value, which can handle some cases of errors or invalid operations such as 0.0/0.0.
 - The fraction field f is set to any non-zero value.
 - The exponent e will contain 111111111.

Range of single-precision numbers

What is the smallest positive single-precision value that can be represented?

Range of single-precision numbers

$$(1 - 2s) * (1 + f) * 2^{e-127}$$
.

- And the smallest *positive* non-zero number is 1 * 2⁻¹²⁶ = 2⁻¹²⁶.
 - The smallest e is 00000001 (1).
- The largest possible "normal" number is $(2 2^{-23}) * 2^{127} = 2^{128} 2^{104}$.
 - The largest possible e is <u>11111110</u> (254).
- In comparison, the range of possible 32-bit integers in two's complement are only -2^{31} and $(2^{31} 1)$
- How can we represent so many more values in the IEEE 754 format, even though we use the same number of bits as regular integers?

Finiteness

- There aren't more IEEE numbers.
- With 32 bits, there are 2³²-1, or about 4 billion, different bit patterns.
 - These can represent 4 billion integers or 4 billion reals.
 - But there are an infinite number of reals, and the IEEE format can only represent *some* of the ones from about -2^{128} to $+2^{128}$.

— Represent same number of values between 2^n and 2^{n+1} as 2^{n+1} and 2^{n+2}

- Thus, floating-point arithmetic has "issues"
 - Small roundoff errors can accumulate with multiplications or exponentiations, resulting in big errors.
 - Rounding errors can invalidate many basic arithmetic principles such as the associative law, (x + y) + z = x + (y + z).
- The IEEE 754 standard guarantees that all machines will produce the same results—but those results may not be mathematically correct!

Limits of the IEEE representation

Even some integers cannot be represented in the IEEE format.

```
int x = 33554431;
float y = 33554431;
printf( "%d\n", x );
printf( "%f\n", y );

33554431
33554432.000000
```

 Some simple decimal numbers cannot be represented exactly in binary to begin with.

$$0.10_{10} = 0.0001100110011..._{2}$$

0.10

- During the Gulf War in 1991, a U.S. Patriot missile failed to intercept an Iraqi Scud missile, and 28 Americans were killed.
- A later study determined that the problem was caused by the inaccuracy of the binary representation of 0.10.
 - The Patriot incremented a counter once every 0.10 seconds.
 - It multiplied the counter value by 0.10 to compute the actual time.
- However, the (24-bit) binary representation of 0.10 actually corresponds to 0.09999904632568359375, which is off by 0.000000095367431640625.
- This doesn't seem like much, but after 100 hours the time ends up being off by 0.34 seconds—enough time for a Scud to travel 500 meters!
- UIUC Emeritus Professor Skeel wrote a short article about this.

Roundoff Error and the Patriot Missile. SIAM News, 25(4):11, July 1992.

Floating-point addition example

- To get a feel for floating-point operations, we'll do an addition example.
 - To keep it simple, we'll use base 10 scientific notation.
 - Assume the mantissa has four digits, and the exponent has one digit.
- The text shows an example for the addition:

As normalized numbers, the operands would be written as:

$$9.999 * 10^{1}$$
 $1.610 * 10^{-1}$

Steps 1-2: the actual addition

1. Equalize the exponents.

The operand with the smaller exponent should be rewritten by increasing its exponent and shifting the point leftwards.

$$1.610 * 10^{-1} =$$

With four significant digits, this gets rounded to:

This can result in a loss of least significant digits—the rightmost 1 in this case. But rewriting the number with the larger exponent could result in loss of the *most* significant digits, which is much worse.

2. Add the mantissas.

Steps 3-5: representing the result

3. Normalize the result if necessary.

$$10.015 * 10^1 =$$

This step may cause the point to shift either left or right, and the exponent to either increase or decrease.

4. Round the number if needed.

$$1.0015 * 10^2$$
 gets rounded to

5. Repeat Step 3 if the result is no longer normalized.

We don't need this in our example, but it's possible for rounding to add digits—for example, rounding 9.9995 yields 10.000.

Our result is , or . The correct answer is 100.151, so we have the right answer to four significant digits, but there's a small error already.

Multiplication

To multiply two floating-point values, first multiply their magnitudes and add their exponents.

- You can then round and normalize the result, yielding $1.610 * 10^{1}$.
- The sign of the product is the exclusive-or of the signs of the operands.
 - If two numbers have the same sign, their product is positive.
 - If two numbers have different signs, the product is negative.

$$0 \oplus 0 = 0$$

$$0 \oplus 1 = 1$$

$$0 \oplus 1 = 1$$
 $1 \oplus 0 = 1$ $1 \oplus 1 = 0$

$$1 \oplus 1 = 0$$

This is one of the main advantages of using signed magnitude.

Feedback

Write one or more of the following: (name optional)

1. What you like about this class so far.

2. What we can do to make this class a better learning environment for you.

3. Something that we are doing that is detrimental to your learning and should stop.

The history of floating-point computation

- In the past, each machine had its own implementation of floating-point arithmetic hardware and/or software.
 - It was impossible to write portable programs that would produce the same results on different systems.
- It wasn't until 1985 that the IEEE 754 standard was adopted.
 - Having a standard at least ensures that all compliant machines will produce the same outputs for the same program.

Floating-point hardware

- When floating point was introduced in microprocessors, there wasn't enough transistors on chip to implement it.
 - You had to buy a floating point co-processor (e.g., the Intel 8087)
- As a result, many ISA's use separate registers for floating point.
- Modern transistor budgets enable floating point to be on chip.
 - Intel's 486 was the first x86 with built-in floating point (1989)
- Even the newest ISA's have separate register files for floating point.
 - Makes sense from a floor-planning perspective.

FPU like co-processor on chip

Summary

- The IEEE 754 standard defines number representations and operations for floating-point arithmetic.
- Having a finite number of bits means we can't represent all possible real numbers, and errors will occur from approximations.