CS 232

It is important that students bring a certain
ragamuffin, barefoot irreverence to their studies;
they are not here to worship what is known, but to
question it. - J. Bronowski

Question authority; but, raise your hand first.
- A. Dershowitz

Pick up the handout on your way in!!

February 3, 2003 Functions in MIPS 1

MP#1: Functions in MIPS

= We’ll talk about the 3 steps in handling function calls:
1. The program’s flow of control must be changed.

2. Arguments and return value‘§ are passed back and forth.

3. Local variables can be allocated and destroyed.
= And how they are handled in MIPS:

— New instructions for calling functions.
— Conventions for sharing registers between functions.

— Use of a stack.
S‘ﬂ&

=

January 30, 2009 ©2003-2009 Craig Zilles (adapted
from slides by Howard Huang)

Control flow in C

» Invoking a function changes the

control flow of a program twice. int_main()
1. Calling the function {
2. Returning from the function t1 = fact(8):
= In this example the main function /" t2 = fact
calls fact twice, and fact returns I t3 = tl + t2
twice—but to different locations e
in main.
= FEach time fact is called, the CPU
has to remember the appropriate int fact(int n)
return address. {
» Notice that main itself is also a int i, f= _
function! It is, in effect, called fofr _(11: = n1 i > 15 -0
by the operating system when r tu_rn £

you run the program. (e

January 30, 2009 Functions in MIPS

Sy

4

Control flow in MIPS

= MIPS uses the jump-and-link instruction jal to call functions.

— The jal saves the return address (the address of the next instruction
in the dedicated register Sra, before jumping to the function.

— jal is the only MIPS instruction that can access the value of the
program counter, so it can store the return address PC+4 in Sra.

jal Fact
-

= To transfer control back to the caller, the function just has to jump to
the address that was stored in Sra. , 5
duw\f Pﬂ‘ S

= Let’s now add the jal and jr instructions that are necessary for our
factorial example.

iﬂ $ra

January 30, 2009 Functions in MIPS

Data flow in C

» Functions accept arguments and
produce return values. int main()

» The blue parts of the program
show the actual and formal 1
arguments of the fact function. T =

t3

= The purple parts of the code deal

with returning and using a result.
}

int fact(int n)
{
int i, f = 1;
for (i =n; i > 1; i--)
f=1f%*1;

return f;
} S,

January 30, 2009 Functions in MIPS 5

Data flow in MIPS

= MIPS uses the following conventions for function arguments and results.

— Up to four function arguments can be “passed” by placing them in
argument registers 5a0-5a3 before calling the function with jal.

— A function can “return” up to two values by placing them in registers
Sv0-5v1, before returning via jr.

= These conventions are not enforced by the hardware or assembler, but

programmers agree to them so functions written by different people can
interface with each other.

= Later we’ll talk about handling additional arguments or return values.

January 30, 2009 Functions in MIPS

A note about types

= Assembly language is untyped—there is no distinction between integers,
characters, pointers or other kinds of values.

= Itis up to you to “type check” your programs. In particular, make sure
your function arguments and return values are used consistently.

= For example, what happens if somebody passes the address of an integer
(instead of the integer itself) to the fact function?

January 30, 2009 Functions in MIPS 7

The big problem so far

» There is a big problem here!
— The main code uses $t1 to store the result of fact(8).
— But St1 is also used within the fact function!

= The subsequent call to fact(3) will overwrite the value of fact(8) that was
stored in St1.

January 30, 2009 Functions in MIPS 8

Nested functions

= A similar situation happens when

you call a function that then calls | A o , in §20-$a3
another function. ;e BTE s il B
. jal B # $ra = A2
= Let’s say A calls B, which calls C. A2 . ——
— The arguments for the call to
C would be placed in Sa0-Sa3,
thus overwriting the original 5
argl{ments.for B. . # Put C’s args in $a0-%$a3,
— Similarly, jal C overwrites the # erasing B’s args!
return address that was saved ial C # $ra =
o o o =
in Sra by the earlier jal B. j B2: ... }
jr S$ra # wnere does

this go?7?

C:
J jr $ra

S

January 30, 2009 Functions in MIPS 9

Spilling registers

= The CPU has a limited number of registers for use by all functions, and
it’s possible that several functions will need the same registers.

= We can keep important registers from being overwritten by a function
call, by saving them before the function executes, and restoring them
after the function completes.

= But there are two important questions.
B : :) : B)
Who is responsible for saving registers—the _caller or the callee?

P~ J

— Where exactly are the register contents saved?
_

January 30, 2009 Functions in MIPS 10

Who saves the registers?

= Who is responsible for saving important registers across function calls?

— The caller knows which registers are important to it and should be
saved.

— The callee knows exactly which registers it will use and potentially
overwrite.

= However, in the typical “black box” programming approach, the caller
and callee do not know anything about each other’s implementation.

— Different functions may be written by different people or companies.

— A function should be able to interface with any client, and different
implementations of the same function should be substitutable.

= So how can two functions cooperate and share registers when they don’t
know anything about each other?

January 30, 2009 Functions in MIPS 11

The caller could save the registers...

= One possibility is for the caller to

save any important registers that frodo: 11 $a0, 3
it needs before making a function 17 Sal, 1
call, and to restore them after. 11_ $s0, 4
14 $s1, 1
= But the caller does not know what
registers are actually written by # save registers
the function, so it may save more # $a0, $al, $s0, $s1

registers than necessary.

= In the example on the right, frodo jal __gollum
WacTtSS ’:ofpreser\{le Saol,a Sta1, [?SO Bﬁ Restore registers
and 5s1 from gollum, but gollum $a0, $al, $s0, $s1

may not even use those registers.

add $vO0, $%$a0, $al
add $v1, $s0O, $s1
jr $ra

<::q'\Qf' 5;GHJQ£!

January 30, 2009 Functions in MIPS 12

...or the callee could save the registers...

= Another possibility is if the callee

saves and restores any registers it gollum:
might overwrite. # Save registe FSD
: . # $a0 $%$a2 $s0O $s

= For instance, a gollum function
that uses registers 5a0, $az, $s0 14 $a0, 2
and Ss2 could save the original 13 332, 7
values first, and restore them 1i __$s0, 1
before returning. 11 ‘3;.52, 8

= But the callee does not know what
registers are 1.m|.30rtant to the # Restore regi sterﬂ
caller, so again it may save more 4 $20 $a2 $s0 $s2

registers than necessary.
- jr $ra

January 30, 2009 Functions in MIPS 13

...or they could work together

= MIPS uses conventions again to split the register spilling chores.

= The caller is responsible for saving and restoring any of the following
caller-saved registers that it cares about.

$t0-5t9 $0-$a3 SV0-$v1 1

In other words, the callee may freely modify these registers, under the
assumption that the caller already saved them if necessary.

= The callee is responsible for saving and restoring any of the following
callee-saved registers that it uses. (Remember that Sra is “used” by jal.)

$s0-Ss7 Sra .

Thus the caller may assume these registers are not changed by the
callee. =

— Sra is tricky; it is saved by a callee who is also a caller.

» Be especially careful when writing nested functions, which act as both a
caller and a callee!

January 30, 2009 Functions in MIPS 14

Register spilling example

= This convention ensures that the caller and callee together save all of
the important registers—frodo only needs to save registers $a0 and Saf,
while gollum only has to save registers SsO and Ss2.

_ <N
frodo: 11 $a0, 3 gollum:
11 _%31, 1 # Save registers
11 S$s0, 4 # $s0 and $s2
19 _$s1, 1 -
11 a0, 2

Save registers 11 $a2, 7
$a0, $a1, 114 $s0, 1
SR ——) —
11 $s2, 8
jal golTum

l # Restore registers # Restore registers
§a_0, $al, $ra #i?_O and $s2
add $v0, $a0, $al ljr $ra
add $vl, %50, %sl

jr $ra (& l‘*p‘ﬁq

| —

January 30, 2009 Functions in MIPS 15

How to fix factorial

In the factorial example, main (the caller) should save two registers.
— St1 must be saved before the second call to fact.
— Sra will be implicitly overwritten by the jal instructions.

But fact (the callee) does not need to save anything. It only writes to
registers St0, St1 and Sv0, which should have been saved by the caller.

January 30, 2009 Functions in MIPS

16

Where are the registers saved?

= Now we know who is responsible for saving which registers, but we still
need to discuss where those registers are saved.

= |t would be nice if each function call had its own private memory area.

— This would prevent other function calls from overwriting our saved
registers—otherwise using memory is no better than using registers.

— We could use this private memory for other purposes too, like storing
local variables.

January 30, 2009 Functions in MIPS 17

Function calls and stacks

Notice function calls and returns occur in \
a stack-like order: the most recently

called function is the first one to return. A
2 A2 :

1. Someone calls A
2 A calls B
3 B calls C
4, C returns to B B:
5 B returns to A
6. Areturns 3 B2:

Here, for example, C must return to B
before B can return to A.

[|FO=smek °

January 30, 2009 Functions in MIPS

18

Stacks and function calls

= |t’s natural to use a stack for function call storage. A _block V- .\

of stack space, called a stack frame, can be allocated for (
each function call. U
— When a function is called, it creates a new frame onto # 54
the stack, k. which will be used for local storage. — 4»‘
— Before the function returns, it must pop its stack frame, ~——=e>
to restore the stack to its original state. (-_/@J{(
= The stack frame can be used for several purposes. @

— Caller- and callee-save registers can be put in the stack.

— The stack frame can also hold local variables, or extra
arguments and return values

-

January 30, 2009 Functions in MIPS 19

6 CF [FeRr

The MIPS stack Keewac
= In MIPS machines, part of main memory is Ox7FFFFFFF 1
reserved for a stack.
— The stack grows downward in terms of stack
memory addresses. V2 Ve raas R L
— The address of the top element of the L
stack is stored (by convention) in the ‘b? - —

“stack pointer” register, Ssp.

= MIPS does not provide “push” and “pop”
instructions. Instead, they must be done
explicitly by the programmer.

%’L’W’

0x00000000

January 30, 2009 Functions in MIPS 20

Pushing elements

To push elements onto the stack:

— Move the stack pointer Ssp down to
make room for the new data.

— Store the elements into the stack.

= For example, to push registers St1 and 5t2
onto the stack:

sub $sp. |:3=
SW $t2, O($SQ_)__

= An equivalent sequence is:

SW tl, -4($s
SW $t2, —8£§sp)
sub $sp, $sp, 8

= Before and after diagrams of the stack are
shown on the right.

January 30, 2009 Functions in MIPS

word 1

%p.—»

word 2

A

T

¢y —

a2

Before

word 1

word 2

St

Ssp —

$t2

After

21

Accessing and popping elements

= You can access any element in the stack p
(not just the top one) if you know where it wor
is relative to Ssp. word 2
= For example, to retrieve the value of St1: St1
Tw _$s0, 4($sp) B Ssp —— St2
= You can pop, or “erase,” elements simply
by adjusting the stack pointer upwards.
= To pop the value of 5t2, yielding the stack
shown at the bottom:
word 1
addi $sp, $sp, 4
g g word 2
= Note that the popped data is still present ;
- . Ssp > St1
in memory, but data past the stack pointer
is considered invalid. 5t2

January 30, 2009 Functions in MIPS

Summary

Today we focused on implementing function calls in MIPS.

— We call functions using jal, passing arguments in registers $Sa0-5a3.
— Functions place results in Sv0-Sv1 and return using jr Sra.
Managing resources is an important part of function calls.

— To keep important data from being overwritten, registers are saved
according to conventions for caller-save and callee-save registers.

— Each function call uses stack memory for saving registers, storing local
variables and passing extra arguments and return values.

Assembly programmers must follow many conventions. Nothing prevents a

rogue program from overwriting registers or stack memory used by some
other function.

In section, we’ll look at writing recursive functions.
— Which we’ll need for MP#3

January 30, 2009 Functions in MIPS 23

Go where the future is.
Write your first iPhone® application in 2 days.

Free
Saturday dinner provided
Please register online

DevPhone 2009

acm.uiuc.edu/macwarriors/devphone

devPHONE2009 is sponsored by the University of lllinoks Department of Computer Science and MacWarriors, a special interest group of the Association for Computing Machinery. The iPhone is a registered
trademark of Apple Inc. Dinner will only be provided on Saturday (the 79)

1)
Oy

—~
h-a -
= -

— - -
,Rn__ L-H_H-E
= mU¥e
& - =

&)

February 7th & 8th
Siebel Center
1PM-9PM

macwarriors @

International Informational Meeting
Genetically Tuesday, Jan. 27
Engineered 7:00pm

Machine Competition 209 I1lini Union

Wanna design an organism?
Interested in CS and biology?

Then come to the lllinois IGEM team informational meeting!

Two teams this year:

molecular biology and bioinformatics
Credit hours available or possibly a
stipend

Last year, we were
awarded a bronze medal
for our work developing a
yeast strain to detect

For more information: cholera in a water supply

Graham Heimberg, using synthetic biology.
gheimbe2@illinois.edu, IGEM webpage: Come join us for this years
www.igem.org project!

lllinois team page:

