
January 28, 2009 ©2003-2009 Craig ZIlles (adapted from
slides by Howard Huang)

1

What does this code do?

 label: sub $a0, $a0, 1
 bne $a0, $zero, label

Arf

January 28, 2009 More MIPS instructions 2

Today’s Lecture

  We’ll go into more detail about the ISA.
—  Pseudo-instructions
—  Using branches for conditionals

January 28, 2009 More MIPS instructions 3

Pseudo-instructions

  MIPS assemblers support pseudo-instructions that give the illusion of a
more expressive instruction set, but are actually translated into one or
more simpler, “real” instructions.

  In addition to the la (load address) we saw on last lecture, you can use
the li and move pseudo-instructions:

 li $a0, 2000 # Load immediate 2000 into $a0

 move $a1, $t0 # Copy $t0 into $a1

  They are probably clearer than their corresponding MIPS instructions:

 addi $a0, $0, 2000 # Initialize $a0 to 2000

 add $a1, $t0, $0 # Copy $t0 into $a1

  We’ll see lots more pseudo-instructions this semester.
—  A complete list of instructions is given in Appendix A of the text.
—  Unless otherwise stated, you can always use pseudo-instructions in

your assignments and on exams.

January 28, 2009 More MIPS instructions 4

  The instructions in a program usually execute one after another, but it’s
often necessary to alter the normal control flow.

  Conditional statements execute only if some test expression is true.

 // Find the absolute value of *a0
 v0 = *a0;
 if (v0 < 0)
 v0 = -v0; // This might not be executed
 v1 = v0 + v0;

  Loops cause some statements to be executed many times.

 // Sum the elements of a five-element array a0
 v0 = 0;
 t0 = 0;
 while (t0 < 5) {
 v0 = v0 + a0[t0]; // These statements will
 t0++; // be executed five times
 }

Control flow in high-level languages

January 28, 2009 More MIPS instructions 5

  It can be useful to draw control-flow graphs when writing loops and
conditionals in assembly:

 // Find the absolute value of *a0
 v0 = *a0;
 if (v0 < 0)
 v0 = -v0;
 v1 = v0 + v0;

 // Sum the elements of a0
 v0 = 0;
 t0 = 0;
 while (t0 < 5) {
 v0 = v0 + a0[t0];
 t0++;
 }

Control-flow graphs

January 28, 2009 More MIPS instructions 6

  In section, we introduced some of MIPS’s control-flow instructions

j // for unconditional jumps
bne and beq // for conditional branches
slt and slti // set if less than (w/ and w/o an immediate)

  And how to implement loops

  Today, we’ll talk about
—  MIPS’s pseudo branches
—  if/else
—  case/switch (bonus material)

MIPS control instructions

January 28, 2009 More MIPS instructions 7

  The MIPS processor only supports two branch instructions, beq and bne,
but to simplify your life the assembler provides the following other
branches:

 blt $t0, $t1, L1 // Branch if $t0 < $t1
 ble $t0, $t1, L2 // Branch if $t0 <= $t1
 bgt $t0, $t1, L3 // Branch if $t0 > $t1
 bge $t0, $t1, L4 // Branch if $t0 >= $t1

  There are also immediate versions of these branches, where the second
source is a constant instead of a register.

  Later this semester we’ll see how supporting just beq and bne simplifies
the processor design.

Pseudo-branches

  Most pseudo-branches are implemented using slt. For example, a branch-
if-less-than instruction blt $a0, $a1, Label is translated into the
following.

 slt $at, $a0, $a1 // $at = 1 if $a0 < $a1
 bne $at, $0, Label // Branch if $at != 0

  This supports immediate branches, which are also pseudo-instructions.
For example, blti $a0, 5, Label is translated into two instructions.

 slti $at, $a0, 5 // $at = 1if $a0 < 5
 bne $at, $0, Label // Branch if $a0 < 5

  All of the pseudo-branches need a register to save the result of slt, even
though it’s not needed afterwards.
—  MIPS assemblers use register $1, or $at, for temporary storage.
—  You should be careful in using $at in your own programs, as it may be

overwritten by assembler-generated code.

January 28, 2009 More MIPS instructions 8

Implementing pseudo-branches

January 28, 2009 More MIPS instructions 9

Translating an if-then statement

  We can use branch instructions to translate if-then statements into MIPS
assembly code.

 v0 = *a0; lw $v0, 0($a0)
 if (v0 < 0) bgt $v0, 0, skip
 v0 = -v0; sub $v0, $zero, $v0
 v1 = v0 + v0; skip: add $v1, $v0, $v0

  Sometimes it’s easier to invert the original condition.
—  In this case, we changed “continue if v0 < 0” to “skip if v0 >= 0”.
—  This saves a few instructions in the resulting assembly code.

January 28, 2009 More MIPS instructions 10

  Let’s write a program to see if a number is a power of 3.

See supplementary material.

Control-flow Example

January 28, 2009 More MIPS instructions 11

Translating an if-then-else statements

  If there is an else clause, it is the target of the conditional branch
—  And the then clause needs a jump over the else clause

 // increase the magnitude of v0 by one
 if (v0 < 0) bge $v0, $0, E
 v0 --; sub $v0, $v0, 1
 j L
 else
 v0 ++; E: add $v0, $v0, 1
 v1 = v0; L: move $v1, $v0

  Dealing with else-if code is similar, but the target of the first branch will
be another if statement.
—  Drawing the control-flow graph can help you out.

January 28, 2009 More MIPS instructions 12

Bonus Material

January 28, 2009 More MIPS instructions 13

Case/Switch Statement

  Many high-level languages support multi-way branches, e.g.

 switch (two_bits) {
 case 0: break;
 case 1: /* fall through */
 case 2: count ++; break;
 case 3: count += 2; break;
 }

  We could just translate the code to if, thens, and elses:

 if ((two_bits == 1) || (two_bits == 2)) {
 count ++;
 } else if (two_bits == 3) {
 count += 2;
 }

  This isn’t very efficient if there are many, many cases.

January 28, 2009 More MIPS instructions 14

Case/Switch Statement

 switch (two_bits) {
 case 0: break;
 case 1: /* fall through */
 case 2: count ++; break;
 case 3: count += 2; break;
 }

  Alternatively, we can:
1.  Create an array of jump targets
2.  Load the entry indexed by the variable two_bits
3.  Jump to that address using the jump register, or jr, instruction

  This is much easier to show than to tell.
—  (see the example with the lecture notes online)

