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  In CS232, we’ll talk about several important issues that we didn’t see in 
the simple processor from CS231. 
—  The instruction set in CS231 lacked many features, such as support 

for function calls. We’ll work with a larger, more realistic processor. 
—  We’ll also see more ways in which the instruction set architecture 

affects the hardware design. 

Instruction set architectures 

Software 

Hardware 

ISA 
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MIPS 

  In this class, we’ll use the MIPS instruction set architecture (ISA) to 
illustrate concepts in assembly language and machine organization 
—  Of course, the concepts are not MIPS-specific 
—  MIPS is just convenient because it is real, yet simple (unlike x86) 

  The MIPS ISA is still used in many places today. Primarily in embedded 
systems, like: 
—  Various routers from Cisco 
—  Game machines like the Nintendo 64 and Sony Playstation 2 
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What you will need to learn this month 

  You must become “fluent” in MIPS assembly: 
—  Translate from C to MIPS and MIPS to C 

  Example problem from a previous mid-term 1: 

Question 3: Write a recursive function (30 points) 

Here is a function pow that takes two arguments (n and m, both 32-bit 
numbers) and returns nm (i.e., n raised to the mth  power).  

int 
pow(int n, int m) { 
   if (m == 1) 
      return n; 
   return n * pow(n, m-1); 
} 

Translate this into a MIPS assembly language function. 
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MIPS: register-to-register, three address 

  MIPS is a register-to-register, or load/store, architecture. 
—  The destination and sources must all be registers. 
—  Special instructions, which we’ll see later today, are needed to access 

main memory.  

  MIPS uses three-address instructions for data manipulation. 
—  Each ALU instruction contains a destination and two sources. 
—  For example, an addition instruction (a = b + c) has the form: 

add  a,  b,  c 

operation 

destination sources 

operands 
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Register file review 

  Here is a block symbol for a general 2k × n register file. 
—  If Write = 1, then D data is stored into D address. 
—  You can read from two registers at once, by supplying the A address 

and B address inputs. The outputs appear as A data and B data. 
  Registers are clocked, sequential devices. 

—  We can read from the register file at any time.  
—  Data is written only on the positive edge of the clock. 

D data 
 Write 

 D address 

 A address B address 

A data B data 

 2k × n Register File 

k k 

k 

 n 

 n  n 
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MIPS register file 

  MIPS processors have 32 registers, each of which holds a 32-bit value.  
—  Register addresses are 5 bits long. 
—  The data inputs and outputs are 32-bits wide. 

  More registers might seem better, but there is a limit to the goodness. 
—  It’s more expensive, because of both the registers themselves as well 

as the decoders and muxes needed to select individual registers. 
—  Instruction lengths may be affected, as we’ll see in the future. 

D data 
 Write 

 D address 

 A address B address 

A data B data 

32 × 32 Register File 

5 5 

5 

 32 

 32  32 
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MIPS register names 

  MIPS register names begin with a $. There are two naming conventions: 
—  By number: 

 $0    $1    $2    …    $31 

—  By (mostly) two-character names, such as: 

 $a0-$a3    $s0-$s7    $t0-$t9    $sp    $ra 

  Not all of the registers are equivalent: 
—  E.g., register $0 or $zero always contains the value 0 

•  (go ahead, try to change it) 

  Other registers have special uses, by convention: 
—  E.g., register $sp is used to hold the “stack pointer” 

  You have to be a little careful in picking registers for your programs. 
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Basic arithmetic and logic operations 

  The basic integer arithmetic operations include the following: 

 add    sub    mul    div 

  And here are a few logical operations: 

 and    or    xor 

  Remember that these all require three register operands; for example: 

  add  $t0, $t1, $t2  # $t0 = $t1 + $t2 
  mul  $s1, $s1, $a0  # $s1 = $s1 x $a0 

Note: a full MIPS ISA reference can be found in Appendix A 
(linked from website) 
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  More complex arithmetic expressions may require multiple operations at 
the instruction set level. 

t0 = (t1 + t2) × (t3 - t4)  

  add  $t0, $t1, $t2  # $t0 contains $t1 + $t2 
  sub  $s0, $t3, $t4  # Temporary value $s0 = $t3 - $t4 
  mul  $t0, $t0, $s0  # $t0 contains the final product 

  Temporary registers may be necessary, since each MIPS instructions can 
access only two source registers and one destination. 
—  In this example, we could re-use $t3 instead of introducing $s0. 
—  But be careful not to modify registers that are needed again later. 

Larger expressions 
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Immediate operands 

  The ALU instructions we’ve seen so far expect register operands. How do 
you get data into registers in the first place? 
—  Some MIPS instructions allow you to specify a signed constant, or 

“immediate” value, for the second source instead of a register. For 
example, here is the immediate add instruction, addi: 

  addi  $t0, $t1, 4  # $t0 = $t1 + 4 

—  Immediate operands can be used in conjunction with the $zero 
register to write constants into registers: 

   addi  $t0, $0, 4  # $t0 = 4 

  MIPS is still considered a load/store architecture, because arithmetic 
operands cannot be from arbitrary memory locations. They must either 
be registers or constants that are embedded in the instruction. 
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A more complete example 

  What if we wanted to compute the following? 

1 + 2 + 3 + 4 
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We need more space!  

  Registers are fast and convenient, but we have only 32 of them, and each 
one is just 32-bits wide. 
—  That’s not enough to hold data structures like large arrays. 
—  We also can’t access data elements that are wider than 32 bits. 

  We need to add some main memory to the system! 
—  RAM is cheaper and denser than registers, so we can add lots of it. 
—  But memory is also significantly slower, so registers should be used 

whenever possible. 
  In the past, using registers wisely was the programmer’s job. 

—  For example, C has a keyword “register” that marks commonly-used 
variables which should be kept in the register file if possible. 

—  However, modern compilers do a pretty good job of using registers 
intelligently and minimizing RAM accesses. 
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Memory review 

  Memory sizes are specified much like register files; here is a 2k x n RAM. 

  A chip select input CS enables or “disables” the RAM. 
  ADRS specifies the memory location to access.  
  WR selects between reading from or writing to the memory. 

—  To read from memory, WR should be set to 0. OUT will be the n-bit 
value stored at ADRS. 

—  To write to memory, we set WR = 1. DATA is the n-bit value to store 
in memory. 

CS WR Operation 

0 x None 
1 0 Read selected address 
1 1 Write selected address 

 2k × n memory 

ADRS  OUT 
DATA 
CS 
WR 

n k 
n 
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MIPS memory 

  MIPS memory is byte-addressable, which means that each memory address 
references an 8-bit quantity. 

  The MIPS architecture can support up to 32 address lines. 
—  This results in a 232 x 8 RAM, which would be 4 GB of memory. 
—  Not all actual MIPS machines will have this much! 

 232 × 8 memory 

ADRS  OUT 
DATA 
CS 
WR 

8 32 
8 

0  1  2  3  4  5  6  7  8  9  10  11 Address 

8-bit data 
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Loading and storing bytes 

  The MIPS instruction set includes dedicated load and store instructions for 
accessing memory, much like the CS231 example processor. 

  The main difference is that MIPS uses indexed addressing. 
—  The address operand specifies a signed constant and a register. 
—  These values are added to generate the effective address. 

  The MIPS “load byte” instruction lb transfers one byte of data from main 
memory to a register.  

  lb $t0, 20($a0)  # $t0 = Memory[$a0 + 20] 

  The “store byte” instruction sb transfers the lowest byte of data from a 
register into main memory.  

  sb $t0, 20($a0)  # Memory[$a0 + 20] = $t0 
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Byte loads 

  Question: if you load a byte (8 bits) into a register (32 bits), what value 
do those other 24 bits have? 
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Loading and storing words 

  You can also load or store 32-bit quantities—a complete word instead of 
just a byte—with the lw and sw instructions. 

  lw $t0, 20($a0)  # $t0 = Memory[$a0 + 20] 
  sw $t0, 20($a0)  # Memory[$a0 + 20] = $t0 

  Most programming languages support several 32-bit data types. 
—  Integers 
—  Single-precision floating-point numbers 
—  Memory addresses, or pointers 

  Unless otherwise stated, we’ll assume words are the basic unit of data.  

0  1  2  3  4  5  6  7  8  9  10  11 Address 

8-bit data 
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An array of words 

  Remember to be careful with memory addresses when accessing words. 
  For instance, assume an array of words begins at address 2000. 

—  The first array element is at address 2000. 
—  The second word is at address 2004, not 2001. 

  Revisiting the earlier example, if $a0 contains 2000, then 

lw $t0, 0($a0) 

 accesses the first word of the array, but 

lw $t0, 8($a0) 

 would access the third word of the array, at address 2008. 
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  So, to compute with memory-based data, you must: 
1.  Load the data from memory to the register file. 
2.  Do the computation, leaving the result in a register. 
3.  Store that value back to memory if needed. 

  For example, let’s say that you wanted to do the same addition, but the 
values were in memory. How can we do the following using MIPS assembly 
language? 

char A[4] = {1, 2, 3, 4}; 

int result; 

result = A[0] + A[1] + A[2] + A[3]; 

   

Computing with memory 
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Memory alignment 

  Keep in mind that memory is byte-addressable, so a 32-bit word actually 
occupies four contiguous locations (bytes) of main memory. 

  The MIPS architecture requires words to be aligned in memory; 32-bit 
words must start at an address that is divisible by 4. 
—  0, 4, 8 and 12 are valid word addresses. 
—  1, 2, 3, 5, 6, 7, 9, 10 and 11 are not valid word addresses. 
—  Unaligned memory accesses result in a bus error, which you may have 

unfortunately seen before. 
  This restriction has relatively little effect on high-level languages and 

compilers, but it makes things easier and faster for the processor. 

0  1  2  3  4  5  6  7  8  9  10  11 

Word 1 Word 2 Word 3 

Address 

8-bit data 
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Next time 

  Our next topic is control flow in MIPS 
—  On Monday, we’ll introduce loops. 
—  Next Wednesday, we’ll show if/then/else structures. 
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General hints to reach CS232 nirvana 

  Remember the big picture. 
 What are we trying to accomplish, and why? 

  Read the textbook. 
 It’s clear, well-organized, and well-written. The diagrams can be 
complex, but are worth studying. Work through the examples and try 
some exercises on your own. Read the “Real Stuff” and “Historical 
Perspective” sections. 

  Talk to each other. 
 You can learn a lot from other CS232 students, both by asking and 
answering questions. Find some good partners for the homeworks (but 
make sure you all understand what’s going on). 

  Help us help you. 
 Come to lectures, sections and office hours. Send email or post on the 
newsgroup. Ask lots of questions! Check out the web page: 

http://www-courses.cs.uiuc.edu/~cs232 


