
January 21, 2009 ©2006 Craig Zilles (adapted
from slides by Howard Huang)

1

CS232: Computer Architecture II
Spring 2009

January 21, 2009 Introduction to CS232 2

Who we are

  Lecturer:
Prof. Craig Zilles

•  I do research on computer architecture and compilers

  Section Instructors & Teaching Assistants:
Samer Fanek
Abner Guzman Rivera
Brett Jones

January 21, 2009 Introduction to CS232 3

  Computer architecture is about building and analyzing computer systems.

  In CS232, we will take a tour of the whole machine.

  Specifically, we’ll…

What is computer architecture about?

Memory Processor

Input/Output

Compiler HLL ASM

January 21, 2009 Introduction to CS232 4

  We’ll look at bit-wise logical and shifting operations in C.

Do low-level programming in a high-level language

Memory Processor

Input/Output

HLL Compiler ASM

January 21, 2009 Introduction to CS232 5

  The Instruction Set Architecture (ISA) is the bridge between the
hardware and the software.
—  We’ll learn the MIPS ISA in detail
—  We’ll get a brief introduction to the x86 ISA
—  We’ll learn how HLL program constructs are represented to the

machine
—  We won’t learn how compilers work, but we’ll learn what they do

Study Instruction Set Architectures

Memory Processor

Input/Output

Compiler HLL ASM

January 21, 2009 Introduction to CS232 6

  We’ll learn how to performance tune programs.
  We’ll exploit explicit parallelism to make programs run faster

—  We’ll optimize a program using SSE instructions

Learn about performance

Compiler HLL ASM
Memory Processor

Input/Output

January 21, 2009 Introduction to CS232 7

  The key technique we’ll focus on is: Pipelining
—  Pipelining allows processors to work on multiple instructions at the

same time.

Learn about Modern Processor Organization

Processor Memory

Input/Output

ASM Compiler HLL

January 21, 2009 Introduction to CS232 8

  We’ll learn how virtual memory makes programming easy
  We’ll learn how caches make memory fast
  We’ll learn about buses and disks

Learn about Memory and I/O systems

Processor Memory

Input/Output

Compiler HLL ASM

January 21, 2009 Introduction to CS232 9

Why should you care?

  It is interesting.
—  How do you make a processor that runs at 3Ghz?

  It will help you be a better programmer.
—  Understanding how your program is translated to assembly code lets

you reason about correctness and performance.
—  Demystify the seemingly arbitrary (e.g., bus errors, segmentation faults)

  Many cool jobs require an understanding of computer architecture.
—  The cutting edge is often pushing computers to their limits.
—  Supercomputing, games, portable devices, etc.

  Computer architecture illustrates many fundamental ideas in computer
science
—  Abstraction, caching, and indirection are CS staples

January 21, 2009 Introduction to CS232 10

CS231 vs. CS232

  This class expands upon the computer architecture material from the last
few weeks of CS231, and we rely on many other ideas from CS231.
—  Understanding binary, hexadecimal and two’s-complement numbers

is still important.
—  Devices like multiplexers, registers and ALUs appear frequently. You

should know what they do, but not necessarily how they work.
—  Finite state machines and sequential circuits will appear again.

  We do not spend much time with logic design topics like Karnaugh maps,
Boolean algebra, latches and flip-flops.

Y

0 0 1 1

0 0 1 1
X

W
0 1 0 0

0 1 0 0

Z

January 22, 2003 Introduction to CS232 11

Low-level Programming in “High-level” Languages

  Very often it is necessary to store a large number of very small data
items.

January 22, 2003 Introduction to CS232 12

Low-level Programming in “High-level” Languages

  Very often it is necessary to store a large number of very small data
items.

  Example: A Social Security Number (SSN) registry
—  Needs to keep track of how which SSNs have already been allocated.

  How much space is required?

January 22, 2003 Introduction to CS232 13

Storing collections of bits as integers

  Store N bits in each N-bit integer, only need 109/N integers
—  Requires 109/8 bytes = 125MBs of storage (fits on a CD)

  Allocate array:
 int array_size = 1000000000/_____________
 unsigned int SSN_registry[array_size];

  Want two operations on this array:
—  check_SSN: returns 1 if SSN is used, 0 otherwise
—  set_SSN: marks an SSN as used.

01000110011111010111010100101001

11011101011010010001010100101011

10010101111010010101100100100010

10010101010101100101010010110010

10010101000101011001010111111101

00001000010111001100100011110101

01101011101001010001000000101011

SSN #7
SSN #68

January 22, 2003 Introduction to CS232 14

check_SSN

int check_SSN(unsigned int SSN_registry[], int ssn) {
 int word_index = ssn / (8*sizeof(int));
 int word = SSN_registry[word_index];

01000110011111010111010100101001

11011101011010010001010100101011

10010101111010010101100100100010

10010101010101100101010010110010

10010101000101011001010111111101

00001000010111001100100011110101

01101011101001010001000000101011

10010101000101011001010111111101

January 22, 2003 Introduction to CS232 15

check_SSN

int check_SSN(unsigned int SSN_registry[], int ssn) {
 int word_index = ssn / (8*sizeof(int));
 int word = SSN_registry[word_index];
 int bit_offset = ssn % (8*sizeof(int)) // % is the remainder operation
 word = word >> bit_offset; // >> shifts a value “right”
 (note: zeros are inserted at the left because it is an unsigned int)

01000110011111010111010100101001

11011101011010010001010100101011

10010101111010010101100100100010

10010101010101100101010010110010

10010101000101011001010111111101

00001000010111001100100011110101

01101011101001010001000000101011

10010101000101011001010111111101

00001001010100010101100101011111

January 22, 2003 Introduction to CS232 16

check_SSN

int check_SSN(unsigned int SSN_registry[], int ssn) {
 int word_index = ssn / (8*sizeof(int));
 int word = SSN_registry[word_index];
 int bit_offset = ssn % (8*sizeof(int))
 word = word >> bit_offset;
 word = (word & 1); // & is the bit-wise logical AND operator
 return word; (each bit position is considered independently)

} 01000110011111010111010100101001

11011101011010010001010100101011

10010101111010010101100100100010

10010101010101100101010010110010

10010101000101011001010111111101

00001000010111001100100011110101

01101011101001010001000000101011

10010101000101011001010111111101

00001001010100010101100101011111

00000000000000000000000000000001
&

00000000000000000000000000000001

January 22, 2003 Introduction to CS232 17

set_SSN

void set_SSN(unsigned int SSN_registry[], int ssn) {
 int bit_offset = ssn % (8*sizeof(int))
 int new_bit = (1 << bit_offset) // “left” shift the 1 to the desired spot
 (always shifts in 0’s at the right)

01000110011111010111010100101001

11011101011010010001010100101011

10010101111010010101100100100010

10010101010101100101010010110010

10010101000101011001010111111101

00001000010111001100100011110101

01101011101001010001000000101011

000000000000000000000010000000000

000000000000000000000000000000001

January 22, 2003 Introduction to CS232 18

set_SSN

void set_SSN(unsigned int SSN_registry[], int ssn) {
 int bit_offset = ssn % (8*sizeof(int))
 int new_bit = (1 << bit_offset)
 int word_index = ssn / (8*sizeof(int));
 int word = SSN_registry[word_index];

01000110011111010111010100101001

11011101011010010001010100101011

10010101111010010101100100100010

10010101010101100101010010110010

10010101000101011001010111111101

00001000010111001100100011110101

01101011101001010001000000101011

100101010001010110010101111111101

000000000000000000000010000000000

000000000000000000000000000000001

January 22, 2003 Introduction to CS232 19

100101010001010110010111111111101

set_SSN

void set_SSN(unsigned int SSN_registry[], int ssn) {
 int bit_offset = ssn % (8*sizeof(int))
 int new_bit = (1 << bit_offset)
 int word_index = ssn / (8*sizeof(int));
 int word = SSN_registry[word_index];
 word = word | new_bit; // bit-wise logical OR sets the desired bit

01000110011111010111010100101001

11011101011010010001010100101011

10010101111010010101100100100010

10010101010101100101010010110010

10010101000101011001010111111101

00001000010111001100100011110101

01101011101001010001000000101011

100101010001010110010101111111101

000000000000000000000010000000000

|

000000000000000000000000000000001

January 22, 2003 Introduction to CS232 20

100101010001010110010111111111101

set_SSN

void set_SSN(unsigned int SSN_registry[], int ssn) {
 int bit_offset = ssn % sizeof(int)
 int new_bit = (1 << bit_offset)
 int word_index = ssn / sizeof(int);
 int word = SSN_registry[word_index];
 word = word | new_bit;
 SSN_registry[word_index] = word; // write back the word into array

}

Shorthand for last 3 lines: SSN_registry[word_index] |= new_bit;

01000110011111010111010100101001

11011101011010010001010100101011

10010101111010010101100100100010

10010101010101100101010010110010

10010101000101011001011111111101

00001000010111001100100011110101

01101011101001010001000000101011

100101010001010110010101111111101

000000000000000000000010000000000

|

000000000000000000000000000000001

January 22, 2003 Introduction to CS232 21

What you just saw

  Storage of a collection of booleans in an integer
  Use of bit-wise logical operations to read and write specific bits
  Use of shifts to move bits with an integer

  This stuff gets used all over the place in real code:
—  Bitmap graphics
—  Network packet headers
—  Operating system tracking free disk blocks

January 21, 2009 Introduction to CS232 22

How the class will be organized

  The textbook provides the most comprehensive coverage
  Lecture and section will present course material
  Section problems useful for gauging your understanding of the material

—  Weekly, graded on effort, and good practice for the exams
  Machine problems are more open-ended applications of course material

—  Due most weeks, graded, can be done in groups (1-3 people)
  Homeworks used for closed-form, quantitative problems

—  Due occasionally, graded
  Exams: three in-class midterms and one final

  See the syllabus:
http://www.cs.uiuc.edu/class/cs232/html/info.html

  Questions?

January 21, 2009 Introduction to CS232 23

Sections start next week. MP’s start next week!!

  Go to section!

  MP#1 will be due the next Wednesday night.
—  It will be out tomorrow
—  Make sure you have a working EWS account soon!!!

•  Contact the TA’s if you are not an engineering major
—  It covers doing bit-wise logical and shifting in C

  MP#0 will be due next Friday.
—  It is already out.
—  It is a SPIM tutorial (this will make more sense on Friday)

January 21, 2009 Introduction to CS232 24

General hints to reach CS232 nirvana

  Remember the big picture.
 What are we trying to accomplish, and why?

  Read the textbook.
 It’s clear, well-organized, and well-written. The diagrams can be
complex, but are worth studying. Work through the examples and try
some exercises on your own. Read the “Real Stuff” and “Historical
Perspective” sections.

  Talk to each other.
 You can learn a lot from other CS232 students, both by asking and
answering questions. Find some good partners for the homeworks (but
make sure you all understand what’s going on).

  Help us help you.
 Come to lectures, sections and office hours. Send email or post on the
newsgroup. Ask lots of questions! Check out the web page:

http://www-courses.cs.uiuc.edu/~cs232

January 21, 2009 Introduction to CS232 25

What you will need to learn this month

  You must become “fluent” in MIPS assembly:
—  Translate from C to MIPS and MIPS to C

  Example problem from last mid-term 1:

Question 3: Write a recursive function (30 points)

Here is a function pow that takes two arguments (n and m, both 32-bit
numbers) and returns nm (i.e., n raised to the mth power).

int
pow(int n, int m) {
 if (m == 1)
 return n;
 return n * pow(n, m-1);
}

Translate this into a MIPS assembly language function.

