Computer Architecture li

CS232

Spring 2009

BIBJIDIULALOWB W NAT

©2006 Craig Zilles (adapted
from slides by Howard Huang)

Clock Generator

January 21, 2009



Who we are

= Lecturer:
Prof. Craig Zilles
e | do research on computer architecture and compilers

= Section Instructors & Teaching Assistants:
Samer Fanek
Abner Guzman Rivera
Brett Jones

January 21, 2009 Introduction to CS232



What is computer architecture about?

» Computer architecture is about building and analyzing computer systems.

Processor
HLL Compiler -\Aﬂ &

InPUt/OUtput g ;

Memory

=

= |n CS232, we will take a tour of the whole machine.

=  Specifically, we’ll...

January 21, 2009 Introduction to CS232 3



Do low-level programming in a high-level language

Processor Memory
HLL Compiler ASM

Input/Output

= We’ll look at bit-wise logical and shifting operations in C.

January 21, 2009 Introduction to CS232



Study Instruction Set Architectures

Processor Memory
HLL Compiler - ASM

Input/Output

= The Instruction Set Ag;hjmml_sy is the bridge between the

hardware and the software.
— We’'ll learn the MIPS ISA in detail
— We’ll get a brief introduction to the x86 ISA

— We’ll learn how HLL program constructs are represented to the
machine

— We won'’t learn how compilers work, but we’ll learn what they do

January 21, 2009 Introduction to CS232



Processor

HLL ASM P <
Input/Output  _8 < [

= We’'ll learn how to performance tune programs.
=  We’'ll exploit explicit parallelism to make programs run faster
— We’ll optimize a program using SSE instructions

January 21, 2009 Introduction to CS232 6



Learn about Modern Processor Organization

. Processor Memory
HLL Compiler ASM &

Input/Output

= The key technique we’ll focus on is: Pipelining

— Pipelining allows processors to work on multiple instructions at the
same time.

January 21, 2009 Introduction to CS232



Learn about Memory and I/0 systems

Memory

=

Processor
HLL Compiler ASM

Input/Output  _8 < [

= We’ll learn how virtual memory makes programming easy
=  We’ll learn how caches make memory fast

= We’'ll learn about buses and disks

January 21, 2009 Introduction to CS232



Why should you care?

= |t isinteresting.
— How do you make a processor that runs at 3Ghz?

= |t will help you be a better programmer.

— Understanding how your program is translated to assembly code lets
you reason about correctness and performance.

— Demystify the seemingly arbitrary (e.g., bus errors, segmentation faults)

= Many cool jobs require an understanding of computer architecture.
— The cutting edge is often pushing computers to their limits.
— Supercomputing, games, portable devices, etc.

» Computer architecture illustrates many fundamental ideas in computer

science
— Abstraction, caching, and indirection are CS staples
A = — N

January 21, 2009 Introduction to CS232 9



CS231 vs. CS5232

= This class expands upon the computer architecture material from the last
few weeks of C5231, and we rely on many other ideas from CS231.

— Understanding binary, hexadecimal and two’s-complement numbers
is still important. O x3€

— Devices like multiplexers, registers and ALUs appear frequently. You
should know what they do, but not necessarily how they work.

— Finite state machines and sequential circuits will appear again. X

=  We do not spend much time with logic design topics like Karnaugh maps,
Boolean algebra, latches and flip-flops.

January 21, 2009 Introduction to CS232 10



Low-level Programming in “High-level” Languages

Very often it is necessary to store a large number of very small data
items.

January 22, 2003 Introduction to CS232

11



Low-level Programming in “High-level” Languages

= Very often it is necessary to store a large number of very small data
items.

= Example: A Social Security Number (SSN) registry
— Needs to keep track of how which SSNs have already been allocated.

= How much space is required?

ik SSA (190 o = | Biun

: 8l
Int =3l =18 —5

"/ ﬁlu.w\ \L
166

January 22, 2003 Introduction to CS232 12



Storing collections of bits as integers

= Store N bits in each N-bit integer, only need 10%/N integers
— Requires 107/8 bytes = 125MBs of storage (fits on a CD)

= Allocate array: ‘ )
int array_size = 1000000000/ (Szeof (MJI* 5

unsigned int SSN_registry[array_size]; L
01000110011111010111010100101001 -
11011101011010010001010100101011 b
10010101111010010101100100100010 Y
é'{é /3ZL 1001010101010110010101001_0110010 )L
100101010001010110010101! 111101 S=
f 1 00001000010111001100100011110101 | ]
b qb 0110101110100101000100000101011 0 &
% B e
=  Want two operations on this array: SSN #7
— check_SSN: returns 1 if SSN is used, 0 otherwise SSN #68

— set_SSN: marks an SSN as used. o — 2
32 | 7 2|68
ak

January 22, 2003 Introduction to CS232



check SSN

int check_SSN(unsigned int SSN_registry[], int_ssn) {

int word_index = ssn / (8*sizeof(int));

int word = SSN reglstry|word index];

10010101000101011001010111111101 -

January 22, 2003 Introduction to CS232

01000110011111010111010100101001

11011101011010010001010100101011

10010101111010010101100100100010

10010101010101100101010010110010

100101010001010110010101

1111101

00001000010111001100100011110101

01101011101001010001000000101011

14



check SSN

int check_SSN(unsigned int SSN_registry[], int ssn) {

int word_index = ssn / (8*sizeof(int));
int word = SSN_registry[word_index];

int bit_offset = ssn % (8*sizeof(int)) // % is the remainder operation

word = word >> bit_offset; // >> shifts a value “right”
L L L Ld Ld
(note: zeros are inserted at the left because it is an unsigned int)

10010101000101011001010111111101 -

H _EIAN

00001001010100010101100101011111

0

January 22, 2003 Introduction to CS232

01000110011111010111010100101001

11011101011010010001010100101011

10010101111010010101100100100010

10010101010101100101010010110010

10010101000101011001010111111101

00001000010111001100100011110101

01101011101001010001000000101011

15



check SSN

int check_SSN(unsigned int SSN_registry[], int ssn) {
int word_index = ssn / (8*sizeof(int));
int word = SSN_registry[word_index];
int bit_offset = ssn % (8*sizeof(int))
word = word >> bit_offset;
word = (word & 1); // & is the bit-wise logical AND operator
return word; (each bit position is considered independently)

—
} 01000110011111010111010100101001
11011101011010010001010100101011
10010101111010010101100100100010
10010101010101100101010010110010

10010101000101011001010111111101 - 10010101000101011001010111111101
00001000010111001100100011110101
01101011101001010001000000101011

00001001010100010101100101011111

ff OOOOOOOOOOOOOOOOOOOOOOOOOOOOBPO1

00000000000000000000000000000001

January 22, 2003 Introduction to CS232 16



set_SSN

void set_SSN(unsigned int SSN_registry[], int ssn) {

int bit_offset = ssn % (8*sizeof(int))

int new_bit = (1 << bit_offseﬂ /1 “left” shift the 1 to the desired spot
(always shifts in 0’s at the right)

000000000000000000000000000000001

01000110011111010111010100101001

11011101011010010001010100101011

R B

10010101111010010101100100100010

0000000000000000000000120000000000
N

10010101010101100101010010110010

10010101000101011001010111111101

00001000010111001100100011110101

01101011101001010001000000101011

January 22, 2003 Introduction to CS232

17



set_SSN

void set_SSN(unsigned int SSN_registry[], int ssn) {
int bit_offset = ssn % (8*sizeof(int))
int new_bit = (1 << bit_offset)
int word_index = ssn / (8*sizeof(int));
int word = SSN_registry[word index];

000000000000000000000000000000001 ST000110011111010111010100101001
l 11011101011010010001010100101011
10010101111010010101100100100010

000000000000000000000010000000000 10010101010101100101010010110010

H 100101010001010110010101111111101 - 10010101000101011001010111111101
00001000010111001100100011110101

01101011101001010001000000101011

January 22, 2003 Introduction to CS232



set_SSN

void set_SSN(unsigned int SSN_registry[], int ssn) {
int bit_offset = ssn % (8*sizeof(int))
int new_bit = (1 << bit_offset)
int word_index = ssn / (8*sizeof(int));
int word = SSN_registry[word_index];
word = word | new_bit; // bit-wise logical OR sets the desired bit

000000000000000000000000000000001 01000110011111010111010100101001

l 11011101011010010001010100101011
10010101111010010101100100100010
000000000000000000000010000000000 10010101010101100101010010110010

100101010001010110010101111111101 - 10010101000101011001010111111101
00001000010111001100100011110101

100101010001010110010111111111101 01101011101001010001000000101011

January 22, 2003 Introduction to CS232 19



set_SSN

void set_SSN(unsigned int SSN_registry[], int ssn) {
int bit_offset = ssn % sizeof (int)
int new_bit = (1 << bit_offset)
int word_index = ssn / sizeof(int);
int word = SSN_registry[word_index];
word = word | new_bit;
SSN_regi d_index] = word; // write back the word into array

000000000000000000000000000000001 01000110011111010111010100101001

l 11011101011010010001010100101011

10010101111010010101100100100010
000000000000000000000010000000000 10010101010101100101010010110010
10010101000101011001011111111101

100101010001010110010101111111101
00001000010111001100100011110101
100101010001010110010111111111101 01101011101001010001000000101011

Shorthand for last 3 lines: SSN_registry[word_index] |= new_bit;

January 22, 2003 Introduction to CS232 20



What you just saw

= Storage of a collection of booleans in an integer
= Use of bit-wise logical operations to read and write specific bits
= Use of shifts to move bits with an integer

= This stuff gets used all over the place in real code:
— Bitmap graphics
— Network packet headers
— Operating system tracking free disk blocks

January 22, 2003 Introduction to CS232

21



How the class will be organized

» The textbook provides the most comprehensive coverage

= |ecture and section will present course material

= Section problems useful for gauging your understanding of the material
— Weekly, graded on effort, and good practice for the exams

= Machine problems are more open-ended applications of course material
— Due most weeks, graded, can be done in groups (1-3 people)

= Homeworks used for closed-form, quantitative problems
— Due occasionally, graded

= Exams: three in-class midterms and one final

= See the syllabus:
http://www.cs.uiuc.edu/class/cs232/html/info.html

=  Questions?

January 21, 2009 Introduction to CS232 22



Sections start next week. MP’s start next week!!

= Go to section!

=  MP#1 will be due the next Wednesday night.
— It will be out tomorrow
— Make sure you have a working EWS account soon!!!
e Contact the TA’s if you are not an engineering major
— It covers doing bit-wise logical and shifting in C

=  MP#0 will be due next Friday.
— |t is already out.
— |t is a SPIM tutorial (this will make more sense on Friday)

January 21, 2009 Introduction to CS232

23



General hints to reach CS232 nirvana

Remember the big picture.
What are we trying to accomplish, and why?

Read the textbook.

It’s clear, well-organized, and well-written. The diagrams can be
complex, but are worth studying. Work through the examples and try
some exercises on your own. Read the “Real Stuff” and “Historical
Perspective” sections.

Talk to each other.

You can learn a lot from other CS232 students, both by asking and
answering questions. Find some good partners for the homeworks (but
make sure you all understand what’s going on).

Help us help you.
Come to lectures, sections and office hours. Send email or post on the
newsgroup. Ask lots of questions! Check out the web page:

http://www-courses.cs.uiuc.edu/~cs232

January 21, 2009 Introduction to CS232

24



What you will need to learn this month

=  You must become “fluent” in MIPS assembly:
— Translate from C to MIPS and MIPS to C

= Example problem from last mid-term 1:

Question 3: Write a recursive function (30 points)

Here is a function pow that takes two arguments (n and m, both 32-bit
numbers) and returns n™ (i.e., n raised to the mt" power).

int
pow(int n, int m) {
if (m==1)
return n;
return n * pow(n, m-1);

}

Translate this into a MIPS assembly language function.

January 21, 2009 Introduction to CS232 25



