
CS232 Discussion 1: MIPS Loops

In lecture, so far we have only talked about how to write straight line MIPS code, i.e. sequences
of instructions that execute one after another. To implement anything interesting, we need to
introduce control flow (i.e., loops and conditionals). Here, we’ll introduce some MIPS control-
flow instructions and discuss how to translate simple for loops into MIPS assembly code.

Simple Conditions and Branches

Unconditional branch: always taken, much like a goto statement in C.

j Loop

Example: Infinite Loop

Loop: j Loop # goto Loop

The label Loop lets us identify which assembly instruction should be executed after the branch.
The label could be anything, as long as the MIPS assembler doeesn’t misinterpret it as an
instruction.

Conditional branch: branch only if condition is satisfied.

bne reg1, reg2, target # branch if reg1 != reg2

bne stands for Branch if Not Equal, so the branch is taken if the values in the two registers
are not equal; otherwise, execution continues to the following instruction (sometimes called the
fallthrough path). There is also a Branch if EQual instruction beq.

What if you want to branch if one register is less than another? We need to synthesize that
out of two instructions: one that compares two values and then a branch instruction based
on the resulting comparison. MIPS provides the slt (Set if Less Than) instruction and its
“immediate” version slti, as illustrated below.

Translating for loops

Here is a simple for loop in C, translated into MIPS alongside:

for(i = 0; i < 4; ++i) { li $t0, 0 # t0 = i = 0
// stuff for_loop:

} slti $t1, $t0, 4 # t1 = 1 if and only if t0 < 4
beq $t1, $0, for_loop_done
stuff
addi $t0, $t0, 1
j for_loop

for_loop_done:

Note that the translation for while-loops is similar.

1

CS232 Discussion 1: MIPS Loops

1. do-while loops

Translate the following snippet of C code into MIPS:

i = 0;
do {
// stuff
i++;

} while(i < 4);

2. while-style or do-while-style?

In the following snippet of C code, the value of variable n is unknown at compile-time. In
order to minimize the number of instructions executed at run-time, should a C-to-MIPS
compiler translate the loop using a while-style or a do-while-style loop?

for(i = 0; i < n; ++i) {
// stuff

}

3. Loop through an array

If $a0 holds the base address of an array A of bytes, the following MIPS code reads A[0]
into register $t0: lb $t0, 0($a0)

To read A[i] into register $t0 requires two steps: (1) compute the address &A[i], and
(2) read the byte from that address. Assuming i is stored in register $t1, the MIPS code
to read A[i] into $t0 is:

add $t2, $a0, $t1 # t2 = &A[t1]
lb $t0, 0($t2) # t0 = A[t1]

Now translate this code into MIPS:

int sum = 0;
for(int i = 0; i < n; ++i)
sum += A[i];

2

