
The x86 Instruction Set Architecture1 CS232: Computer Architecture II

This set of notes provides an overview of the x86 instruction set architecture and its use in modern software. The goal
is to familiarize you with the ISA to the point that you can code simple programs and can read disassembled binary
code comfortably. Substantial portions of the ISA are ignored completely for the sake of simplicity. The notes use the
assembly notation used by the GNU tools, including the assembler as (used by the compiler gcc) and the debugger
gdb. Other tools may define other notations, but such things are merely cosmetic so long as you pay attention to what
you are using at the time.

The Basics: Registers, Data Types, and Memory
You may have heard or seen the term “Reduced Instruction Set Computing,” or RISC, and its counterpart, “Complex
Instruction Set Computing,” or CISC. While these terms were never entirely clear and have been further muddied by
years of marketing, the x86 ISA is certainly vastly more complex than that of MIPS. On the other hand, much of
the complexity has to do with backwards compatibility, which is mostly irrelevant to someone writing code today.
Furthermore, we need use only a limited subset of the ISA in this class.

Modern flavors of x86—also called IA32, or Intel Architecture 32—have eight 32-bit integer registers. The registers
are not entirely general-purpose, meaning that some instructions limit your choice of register operands to fewer than
eight. A couple of other special-purpose 32-bit registers are also available—namely the instruction pointer (program
counter) and the flags (condition codes), and we shall ignore the floating-point and multimedia registers. Unlike most
RISC machines, the registers have names stemming from their historical special purposes, as described below.

%eax accumulator (for adding, multiplying, etc.)
%ebx base (address of array in memory)
%ecx count (of loop iterations)
%edx data (e.g., second operand for binary operations)
%esi source index (for string copy or array access)
%edi destination index (for string copy or array access)
%ebp base pointer (base of current stack frame)
%esp stack pointer (top of stack)

%eip instruction pointer (program counter)
%eflags flags (condition codes and other things)

AH
BH
CH
DH

high

AX
31

AH AL

EAX

8 016 15 7

8−bit

AL
BL
CL
DL

low
EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP

32−bit
AX
BX
CX
DX
DI
DI
SP
BP

16−bit

The character “%” is used to denote a register in assembly code and is not considered a part of the register name itself;
note also that register names are not case sensitive. The letter “E” in each name indicates that the “extended” version
of the register is desired (extended from 16 bits). Registers can also be used to store 16- and 8-bit values, which is
useful when writing smaller values to memory or I/O ports. As shown to the right above, the low 16 bits of a register
are accessed by dropping the “E” from the register name, e.g., %si. Finally, the two 8-bit halves of the low 16 bits of
the first four registers can be used as 8-bit registers by replacing “X” with “H” (high) or “L” (low).

The x86 ISA supports both 2’s complement and unsigned integers in widths of 32, 16, and 8 bits, single and double-
precision IEEE floating-point, 80-bit Intel floating-point, ASCII strings, and binary-coded decimal (BCD). Most in-
structions are independent of data type, but some require that you select the proper instruction for the data types of the
operands. Try multiplying 32-bit representations of -1 and 1 to produce a 64-bit result, for example.

Use of memory is more flexible in x86 than in MIPS: in addition to load and store operations, many x86 operations
accept memory locations as operands. For example, a single instruction serves to read the value in a memory location,
add a constant, and store the sum back to the memory location. With x86, memory is 8-bit (byte) addressable and uses
32-bit addresses, although few machines today fully populate this 4 GB address space.

One aspect of x86’s treatment of memory may confuse you: it is little endian. Little endian means that if you store a
32-bit register into memory and then look at the four bytes of memory one by one, you will find the little end of the
32 bits first, followed by the next eight bits, then the next, and finally the high eight bits of the stored value. Thus
0x12345678 becomes 0x78, 0x56, 0x34, 0x12 in consecutive memory locations. Obviously, values read from memory

2

also use this mapping, so that reading the bytes back in as a 32-bit value produces 0x12345678 again.

The x86 Instruction Set Architecture
You will find that there are many similarities between MIPS and x86. There are all of the same basic constructs:
operate instructions, data movement instructions, and control flow instructions.

Operate instructions: Arithmetic operators are ADD, SUB, NEG (negate), INC (increment), and DEC (decrement);
logical operators are AND, OR, XOR, and NOT; shift operators are SHL (left), SAR (arithmetic right), and SHR (log-
ical right); finally, one can rotate bits, i.e., shift with wraparound, to the left (ROL) or to the right (ROR). The first key
difference is that x86 instructions typically specify one register as both the destination and one of the sources. Thus,
one can execute

addl %eax,%ebx # EBX � EBX + EAX
but cannot use a single ADD instruction to put the sum of EAX and EBX into ECX. The part to the right in the exam-
ple above is an x86 assembly language comment showing you the interpretation of the instruction in RTL, or register
transfer language, with which you should already be familiar. Also, as you may have noticed from the example, the
instruction name is extended with a label for the type of data, an “L” in the case above to indicate long, or 32-bit,
operands. The other possibilities are “W” for 16-bit (word) and “B” for 8-bit (byte) operands. These markers are not
required unless the operand types are ambiguous, but always using them can help to bring bugs to your attention.

Another difference that you might have noticed between MIPS assembly code and x86 assembly code—as defined by
GNU’s as in the latter case—is that the x86 destination register appears as the last operand rather than the first. Such
orderings can be assembler-specific, but keep this ordering in mind when writing x86 assembly in this class.

Operate instructions in MIPS also allow the use of immediate values, but are usually restricted to values that fit in
16 bits. The x86 ISA uses variable-length instructions, so immediate values of up to 32-bits are usually allowed, and
values that fit into fewer bits are encoded as shorter instructions. Immediate values are preceded with a dollar sign in
the assembler, thus

addl $20,%esp # ESP � ESP + 20
adds 20 to the current value of ESP. Numbers starting with digits 1 through 9 are treated as decimal values; numbers
starting with the prefix “0x” are treated as hexadecimal values; and numbers starting with the digit 0 (but no “x”) are
treated as octal values.

One aspect of x86’s operand flexibility may end up causing problems for you. In particular, an operand may be either
a memory reference or an immediate value. For example, removing the dollar sign from the stack addition above
produces:

addl 20,%esp # ESP � ESP + M[20]
in which the contents of memory location 20 are added to ESP rather than the value 20. Be careful to include a “$”
when you want a number interpreted as an immediate value! Note that labels are also affected in the same way with
these instructions. A label without a preceding dollar sign generates a memory reference to the memory location
marked by the label. A label preceded by a dollar sign results in an immediate operand with the value of the label
(typically a 32-bit value).

One last comment about operate instructions. The x86 does support a fairly general addressing mode that can be
used in combination with the LEA instruction (load effective address) to support more general addition operations. In
particular, the format is

displacement(SR1,SR2,scale)
which multiplies SR2 by scale, then adds both SR1 and displacement. For example, one can use a single LEA
instruction to put the sum of EAX and EBX into ECX as follows:

leal (%eax,%ebx),%ecx # ECX � EAX + EBX
In this case, both displacement and scale have been left off, in which case they default to zero and one, respec-
tively. The original purpose and limitations of this addressing mode are discussed in the next section.

Finally, the list below shows a few common operations for which one used arithmetic instructions in MIPS.

movl $10,%esi # ESI � 10
movl %eax,%ecx # ECX � EAX
xorl %edx,%edx # EDX � 0

Data movement instructions: MIPS is a load-store architecture, meaning that the only instructions that access mem-

3

ory are those that move data to and from registers. MIPS only provides one addressing mode for loads and stores:
base register+offset, generally written as offset(base).

The x86 ISA supports both more opcodes and more addressing modes than the MIPS. Loads and stores in x86 are
unified into the MOV instruction. However, as many x86 operations can use memory operands directly, not all data
movement requires the use of MOV.

Most x86 addressing modes can be viewed as specific cases of the general mode described earlier (displacement(SR1,SR2,scale)).
The purpose of this addressing mode was originally to support array accesses generated by high-level programs. For
example, to access the

� th element of an array of 32-bit integers, one could put a pointer to the base of the array into
EBX and the index

�
into ESI, then execute
movw (%ebx,%esi,4),%eax # EAX � M[EBX + ESI * 4]

If the array started at the ��� th byte of a structure, and EBX instead held a pointer to the structure, one could still use
this form by adding a displacement:

movw 28(%ebx,%esi,4),%eax # EAX � M[EBX + ESI * 4 + 28]
The scale can take the values one, two, four, and eight, and defaults to one. Examples of how one can use this mode
and its simpler forms include the following:

movb (%ebp),%al # AL � M[EBP]
movb -4(%esp),%al # AL � M[ESP - 4]
movb (%ebx,%edx),%al # AL � M[EBX + EDX]
movb 13(%ecx,%ebp),%al # AL � M[ECX + EBP + 13]
movb (,%ecx,4),%al # AL � M[ECX * 4]
movb -6(,%edx,2),%al # AL � M[EDX * 2 - 6]
movb (%esi,%eax,2),%al # AL � M[ESI + EAX * 2]
movb 24(%eax,%esi,8),%al # AL � M[EAX + ESI * 8 + 24]

x86 also includes a direct addressing mode, in which the address to be used is specified as an immediate value in the
instruction. The examples below show a number of ways in which data can be moved to and from specific address
(often represented by labels in assembly code).

movb 100,%al # AL � M[100]
movb label,%al # AL � M[label]
movb label+10,%al # AL � M[label+10]
movb 10(label),%al # NOT LEGAL!

movb label(%eax),%al # AL � M[EAX + label]
movb 13+8*8-35+label(%edx),%al # AL � M[EDX + label + 42]

movw $label,%eax # EAX � label
movw $label+10,%eax # EAX � label+10
movw $label(%eax),%eax # NOT LEGAL!

The middle two examples above return to the more general addressing mode and demonstrate some of the GNU
assembler’s capabilities in terms of evaluating expressions. Replacing MOVB with LEAL (and AL with EAX) in any
of the first two groups of examples results in EAX being filled with the address used for the load. Putting an immediate
marker (“$”) in front of the label (as in the last group) has the same effect for some forms, but is not always legal.

Condition codes: For our purposes, the x86 has five relevant condition codes. The sign flag (SF) records whether
the last result represented a negative 2’s complement integer (had its most significant bit set). The zero flag (ZF)
records whether the last result was exactly zero. The carry flag (CF) records whether the last result generated a
carry or required a borrow, but is also used to hold bits shifted out with shifts, to record whether the high word of a
multiplication is non-zero or not, and other such things (i.e., there are far too many instruction-specific effects to list
here). The overflow flag (OF) records whether the last operation overflowed when interpreted as a 2’s complement
operation, and serves additional purposes in the same fashion as CF. Finally, the parity flag (PF) records whether the
last result had an even number of 1’s or not; it is set for even parity, and clear for odd parity.

One aspect of the x86 ISA’s use of flags is important to keep in mind when writing code: not all result-producing
instructions affect the flags, and not all flags are affected by instructions that affect some flags. That said, most
instructions mentioned so far affect all flags, The exceptions include MOV, LEA, and NOT, which affect no flags;

4

ROL and ROR, which affect only OF and CF; and INC and DEC, which affect all but CF.

In order to set the flags based on the result of a MOV or LEA (or any other instruction that doesn’t affect the flags),
use either a CMP (compare) or TEST instruction to set the flags first. The CMP instruction performs a subtraction,
subtracting its first argument from its second, and sets the flags based on the result; nothing else is done with the result.
The TEST instruction performs an AND operation between its two operations, sets the flags accordingly (OF and CF
are cleared; SF, ZF, and PF are set according to the result), and discards the result of the AND.

Conditional branches: Eight basic branch conditions and their inverses are available with the x86 ISA, along with
the unconditional branch JMP. These branches are described below, along with the conditions under which the branch
is taken.

jo overflow OF is set jb below CF is set
jp parity PF is set (even parity) jbe below or equal CF or ZF is set
js sign SF is set (negative) jl less SF �� OF
je equal ZF is set jle less or equal (SF �� OF) or ZF is set

The sense of each branch other than JMP can be inverted by inserting an “N” after the initial “J,” e.g., JNB jumps if the
carry flag is clear. Furthermore, many of the branches have several equivalent names. For example, JZ (jump if zero)
can be written in place of JE (jump if equal). Unsigned comparisons should use the “above” and “below” branches,
while signed comparisons should use the “less” or “greater” branches, as shown in the table below. The preferred
forms are those that the debugger uses when disassembling code.

preferred form
jnz
jne

jnae
jb

jna
jbe

jz
je

jnb
jae

jnbe
ja

unsigned comparisons

�� � � = 	

preferred form jne

jnz
jl

jnge
jle
jng

je
jz

jge
jnl

jg
jnle

signed comparisons

The table should be used as follows. After a comparison such as
cmp %ebx,%esi # set flags based on (ESI - EBX)

choose the operator to place between ESI and EBX, based on the data type. For example, if ESI and EBX hold
unsigned values, and the branch should be taken if ESI � EBX, use either JBE or JNA. If ESI and EBX hold signed
values, and the branch should be taken if ESI
 EBX, use either JG or JNLE. For branches other than JE/JNE based
on instructions other than CMP, you should check the stated branch conditions rather than trying to use the table.

Other control instructions: Subroutine control is straightforward. The CALL instruction in x86 plays the role of
the MIPS subroutine call instructions, jal and jalr. The single operand of a CALL can be either direct or indirect;
indirect operands are preceded by an asterisk:

call printf # (push EIP), EIP � printf
call *%eax # (push EIP), EIP � EAX
call *(%eax) # (push EIP), EIP � M[EAX]
call *fptr # (push EIP), EIP � M[fptr]
call *10(%eax,%edx,2) # (push EIP), EIP � M[EAX + EDX*2 + 10]

The CALL instruction pushes the return address onto the stack before changing the instruction pointer. Its counterpart,
the RET (return) instruction, then pops the return address off the stack and into EIP in order to return from the called
routine. The calling convention is described in greater detail later in these notes.

The unconditional branch instruction JMP mentioned earlier also takes the role of the indirect jump instruction in x86,
using the same syntax as shown above for the CALL instruction.

Two types of instructions are not covered by these notes. The x86 INT instruction provides support for system calls
through a mechanism similar to the MIPS syscall instruction, except the x86 version passes a value. However,
understanding its use in a more modern operating system requires some discussion. Similarly, x86’s return from
interrupt (IRET) instruction is similar to MIPS’s rfe.

Labels, comments, directives, and pseudo-ops: Labels can begin with any letter, a period, or an underscore. Char-
acters after the first can also include numbers. Later characters can also include dollar signs, but introducing the

5

context-specific meaning can be confusing. Is it part of a label, or an immediate value marker? Each label definition
must be followed by a colon; uses of a label do not include this colon, and it is not considered to be part of the label.
Labels are case sensitive. Labels are the only case sensitive aspect of the as assembler mentioned in these notes.
Finally, if you look at assembly code generated by the gcc compiler, you will notice that it starts its label names with
a period; if you want to mix your code with code generated from C, you may want to avoid starting your labels with
periods.

Comments can take two forms. The examples in these notes so far have used a form similar to that found in the MIPS
assembler. In particular, the assembler ignores everything on a given line after the first pound sign (‘#”). Multi-line
comments are also allowed with as, using C-style demarcation:

/* A comment of this form
can span multiple lines. */

Note that semicolons can be used to separate x86 instructions grouped onto a single line, as shown here:
movw my data ptr,%eax ; movw (%eax),%eax # EAX � M[M[my data ptr]]

The following assembler directives are all fairly useful. The x86 assembler supports both .GLOBAL and .EXTERN
to declare symbols to be visible externally and to be defined externally, respectively. The .EXTERN directive is
technically unnecessary: the assembler assumes that any undefined symbol is defined elsewhere. This assumption
implies that the assembler cannot identify undefined symbols until link time! Take the time to figure out what a
missing symbol looks like as a linker error in advance so that you don’t have to guess when you see the error later.

The MIPS .asciiz directive becomes .STRING. Empty space can be created using the .SPACE directive, which
requires a first argument specifying the number of bytes and accepts an optional second argument specifying the byte
value to use as filler. Examples of these new directives are shown below:

.byte 12,-15 # 8-bit values

.word 200,4000 # 16-bit values

.long -987654321 # 32-bit values

.quad 9999999999 # 64-bit values

.single 1.0,2.0 # single-precision IEEE floating-point

.double 2.0,3.1415 # double-precision IEEE floating-point

alternate forms
.hword 22000,-17 # 16-bit values
.int 1,4,9,0x16 # 32-bit values
.float 2.7 # single-precision IEEE floating-point

Another useful directive is worth mentioning here: .INCLUDE. This directive tells the assembler to read in the contents
of another file and to insert it in place of the directive. It is equivalent to the C preprocessor’s #include directive.

Input and output: MIPS uses memory-mapped I/O for all devices, as do most modern architectures. In contrast,
older architectures like the x86 were originally designed with separate I/O name spaces and special instructions for
accessing them. Originally, the 8086 communicated only through devices such as the serial port, to which one could
attach a terminal for displaying the output and a keyboard for driving the input to the processor. Someone soon
realized that one could drop a display card with memory into the system bus and take over part of the memory’s
address space without changing the processor, however, and ever since, x86-based desktop computers have used both
memory-mapped and instruction-based I/O.

The I/O instructions have not changed substantially since the original 8086 ISA, and require the use of specific regis-
ters. In particular, while one can now write a 32-bit word to a sequence of I/O ports, the data must still be in the EAX
register (AX for 16-bit, or AL for 8-bit). Data from ports are also read into EAX. Similarly, the port number to be used
can be specified as either an 8-bit immediate or loaded into DX (the port space is 16-bit). The examples below use the
notation P[x] to denote port x.

inb $0x40,%al # AL � P[0x40]
inw (%dx),%ax # AL � P[DX], AH � P[DX + 1]
outb %al,(%dx) # P[DX] � AL
outw %ax,68 # P[68] � AL, P[69] � AH

As illustrated explicitly in the examples above, the port address space is treated much like memory with x86. In par-
ticular, it is both byte-addressable and little endian. Thus writing 16 bits to a port writes the low 8 bits to the named

6

port, and the high 8 bits to the next port. Finally, like MOV, neither IN nor OUT affects the flags.

Other Useful Instructions
The last section focused primarily on x86 instructions similar to those available in MIPS. This section introduces a
few types of instructions that require more substantial software support with MIPS.

Stack operations: The x86 ISA supports a stack abstraction directly rather
than as a software convention. The PUSH and POP instructions provide the
necessary functionality. As shown to the right, the stack convention used is
that ESP contains the address of the element on top of the stack. The stack
grows downward in addresses, like that of the MIPS, so

pushl %eax # M[ESP - 4] � EAX, ESP � ESP - 4

is equivalent to

movl %eax,-4(%esp) # M[ESP - 4] � EAX
subl $4,%esp # ESP � ESP - 4

st
ac

k
gr

ow
th

.
.
.

ESP

higher addresses

Other than a POP into the EFLAGS register, PUSH and POP do not affect the flags.

Multiplication and division: Signed and unsigned forms of integer multiplication and division are available in the
x86 ISA. The unsigned multiply (MUL) requires that EAX be one of the operands (or AX, or AL), and places the
high bits of the result in EDX, and the low bits in EAX (or DX:AX, or AX). Both signed (IDIV) and unsigned (DIV)
division have similar restrictions. The dividend must be placed in EDX:EAX (or DX:AX, or AX). After an IDIV
instruction, EAX (or AX, or AL) holds the quotient, and EDX (or DX, or AH) holds the remainder. If the quotient
overflows the destination register, an exception is generated.

Signed multiplication is more flexible. Although the instruction formats supported with unsigned multiplication are
also available, signed multiplication also allows two- and three-operand forms, as shown below. In these forms, the
high bits of the product are discarded.

imull %ebx,%eax # EAX � EAX * EBX
imull $1000,%ebx,%eax # EAX � 1000 * EBX

The flags are undefined after division, and only the CF and OF flags have a meaning with multiplication (note that the
other flags are undefined, not unaffected; do not expect them to retain their previous values). With multiplication, both
CF and OF are set whenever the high bits of the result are non-zero.

Data type conversions: The MOV instruction can also be used to convert small integers into larger ones through sign
or zero extension. Converting large integers into smaller ones is usually done by simply using other register names
(e.g., AX or AL for a value in EAX). After MOV, add either “S” for sign extension or “Z” for zero extension, then a
letter for the original size, and a letter for the final size. For example, MOVZBL zero extends a byte from memory or
another register into a long (32 bits). Special forms are available for EAX: CBTW converts signed byte AL to word
AX, CWTL converts signed word AX to long word EAX, and CLTD converts signed long word EAX to double word
EDX:EAX. The last is useful in preparing for IDIV. Be careful about CWTD: it exists, but changes AX into DX:AX.

The Calling Convention
Writing x86 assembly that interfaces with high-level languages such as C requires that one understand the calling
convention for the ISA. This section begins with a description of the rules for passing and returning values and register
ownership in the x86 calling convention, then provides an example in which a C function and a use of that function
are translated into x86 assembly code.

Parameters, return values, and registers: Parameters passed to a function are pushed onto the stack with x86. In
most high-level languages, parameters are pushed from right to left to allow for a variable number of parameters
without requiring additional space for parameter counts or sentinels.

The location of the value returned from a function depends on the type of the value being returned. For pointers and
integers requiring no more than 32 bits, the return value is placed in EAX. Integers and other non-floating-point types
of more than 32 but no more than 64 bits are split between EDX (high bits) and EAX (low bits). Floating-point values

7

are returned on the top of the floating-point stack (not discussed in these notes).

Most of the registers are considered to be owned by the caller. Both the stack and the frame pointer, ESP and EBP,
must be returned unchanged. Similarly, EBX, ESI, and EDI are callee-saved. The return values EAX and EDX must
obviously be saved by the caller, if they are to be preserved. The ECX register is also caller-saved (as is EFLAGS).

/* call the function */
value = a func (10, 20);

int
a func (int a, int b)�

int result;

result = a * b + 1;

return result;�

the call site...
pushl $20 # push second argument
pushl $10 # push first argument
call a func # call the function
addl $8,%esp # pop the arguments
movl %eax,-4(%ebp) # store result in ’value’

a func:
pushl %ebp # save old frame pointer
movl %esp,%ebp # point to new frame
subl $4,%esp # make room for ’result’
movl 8(%ebp),%eax # put ’a’ into EAX
imull 12(%ebp),%eax # multiply EAX by ’b’
incl %eax # add one
movl %eax,-4(%ebp) # store into ’result’
movl -4(%ebp),%eax # return ’result’ in EAX
leave # restore frame pointer
ret # return

Caller side: Consider the code shown above in which the C function a func is called by another piece of code. The
C versions of the call site and the function appear on the left, with their translations to the right. For clarity, the
assembly code is not optimized.

To prepare for a call, the caller first pushes the function parameters onto the stack. In this case, the immediate values 20
and 10 are pushed. The CALL instruction is then executed, which pushes the next EIP (pointing to the ADD after the
CALL) onto the stack and changes the EIP to the start of the function. The diagram to
the right illustrates the stack pointer values at the start of the function. The top of the
stack (ESP) holds the return address, under which are the function parameters (often
called formals within the function). The EBP register still points to the stack frame
of the caller. The function a func then executes as described in the next section,
returning the two stack registers to the values shown at the right before executing
the RET instruction. The RET instruction pops the return address from the stack.
The caller then removes the parameters from the stack using an ADD and stores the
return value from EAX into the appropriate local variable (relative to its own frame
pointer).

Callee side: The instructions in the function can be broken into three groups: one to
set up the function’s stack frame, a second to implement the function, and a third to
tear down the stack frame. The state of the stack during function execution is shown
in the diagram to the right, so the stack frame set up code shifts from the diagram
above to the one to the right, and the tear down code returns the stack state to that
shown above.

Set up begins by pushing the old frame pointer (EBP) onto the stack, then copying
ESP into EBP. A copy of the old frame pointer thus sits at the base of the new stack
frame, and the new frame pointer points to it, effectively forming a linked list of stack

st
ac

k
gr

ow
th

b = 20

a = 10

.
.
.

return address

EBP

ESP

st
ac

k
gr

ow
th

result

old EBP

b = 20

a = 10

.
.
.

return address

EBP

ESP

frames. If any callee-saved registers (EBX, ESI, and EDI) are used by the function implementation, they are then
pushed onto the stack (none are used by a func). Finally, the stack pointer is updated to make room for local variables.

Tearing down the stack frame requires only a single instruction when no callee-saved registers have been preserved.
The LEAVE instruction restores the old values of EBP and ESP (in RTL, ESP � EBP + 4, EBP � M[EBP]).
When callee-saved registers must be restored, an LEA instruction points the ESP to the uppermost saved register, then
a sequence of POPs (the last into EBP) restores the original stack state.

8

Miscellany
Data type alignment: Most architectures support byte-addressable memory. However, when moving data to and
from memory, they often restrict the address used to even multiples of the data type. For example, 16-bit values can
only be written or read from even addresses, and 32-bit values require addresses that are multiples of four (32 bits is
four bytes). The x86 ISA technically does not require such alignment, but only because the 8086 did not impose any
restrictions. From a performance standpoint, however, unaligned loads and stores are extremely slow. The rationale is
that anyone running software old enough to contain unaligned accesses could not possibly care about the performance
of that software, given that the clock speed of the processor is already three orders of magnitude faster.

The implication for your programs is that arrays of data (as well as code, but for slightly different reasons) should be
properly aligned in memory. To ensure proper alignment, use the .ALIGN directive, which takes a single argument
and inserts enough blank space to reach the next address that is a multiple of the argument. For example, if you want
to declare an array of 32-bit numbers, you should write something similar to the following:

.align 4 # the label my array (an address) is a multiple of 4
my array: .long 100000,4000000000,24,0

Support for larger data types: Larger integer data types can be constructed from the existing types by operating on
the larger values word by word and using the carry flag to simulate larger adders, multipliers, etc.. For example, to
add two 64-bit numbers, first add the low 32 bits with ADDL, then use ADCL (add with carry, long) to add the high
32 bits along with the carry flag. If you are interested in such things, take a look at add with carry (ADC), subtract
with borrow (SBB), and rotate with carry (RCL/RCR).

Getting More Information
Many sources of information are available if you want to learn more about the x86 ISA or implementations thereof.
You can find ISA manuals (from Intel, or AMD for AMD-64) online; official manuals for the x86 family are available
at http://www.x86.org/intel.doc/ and many informal guides are available elsewhere. The mnemonics and
syntax may differ, but the instruction sets are the same, so you should be able to figure out how to get an instruction to
work once you know that it exists.

For information about the GNU assembler, the best source is the info page: type “info as” at the prompt in Linux; the
info interface is much like that of emacs, so hopefully you’re comfortable with that interface. For many instructions,
calling conventions, function prototypes, etc., you can simply write the code you want in C and have gcc compile it to
assembly for you with the -S flag. Don’t use -o with -S; by default, gcc will create a new file ending in .s, but you can
(and should not) override it with -o. Also beware of clobbering a modified .s file! Much of the information in this set
of notes was gathered with -S.

Finally, you may find Randy Hyde’s e-books on programming in x86 assembly useful. They are freely available from
his web site: http://webster.cs.ucr.edu.

