
Welcome to CS 225
Data Structures

lab_hash

✓ Hash tables

✓ Collision resolution:

• Separate chaining

• Linear probing

• Double hashing

Now: Implementation
Separate Chaining

1. insert

2. find

3. remove

4. resizeTable

The following files (and ONLY those
files!!) are used for grading this lab:

dhhashtable.cpp
lphashtable.cpp
schashtable.cpp

Double Hashing Hash Table

1. insert

2. findIndex

3. remove

Linear Probing Hash Table

1. insert

2. findIndex

3. remove

4. resizeTable

HashTable< K, V > Class

Separate Chaining (Open hashing)

Values are stored outside of the table:

The idea is to make each cell of hash table point to a linked list of
records that have same hash value.

12 52

15 8

25 16 27

Separate Chaining – insert

Imagine we are inserting new element with key=23; if hash(23)=2,
where is new element inserted? What is the optimal running time for
insert?

12 52

15 8

25 16 27

Separate Chaining – insert

Imagine we are inserting new element with key=23; if hash(23)=2,
23 is inserted in the beginning of the linked list on index 2 –
inserting in the beginning of the linked list has O(1) running time.

12 52

15 8

25 16 2723

Separate Chaining – insert(key)

To calculate hash value for the given key, you can use function declared
in hashes.h file inside namespace hashes:

template <class K>
unsigned int hash(const K& key, int size);

What else do you have to do when inserting new element?

Separate Chaining – insert(key)

To calculate hash value for the given key, you can use function declared
in hashes.h file inside namespace hashes:

template <class K>
unsigned int hash(const K& key, int size);

What else do you have to do when inserting new element?
Increase element count. Calculate new load factor and
resize table if necessary.

Separate Chaining – resizeTable

What else should happen in function resizeTable?

Separate Chaining – resizeTable

What else should happen in function resizeTable?
Hash value of every element will change once we
resize the table (since size is changing). So we need
to calculate new hash value for each element and insert
in them in the resized container in the proper place.

Separate Chaining – remove(key) & find(key)
Remove(key) finds the element, removes from the list and decreases
the number of elements.

Find(key) finds the element and returns the value corresponding to it.

How can you find the element in the table?

Separate Chaining – remove(key) & find(key)
How can you find the element in the table?

Use hash function to get the index of the list element should be in and then go over every
element in the list to find the key.

Remember:

Closed Hashing

All entry records are stored in the bucket array itself.

12 52825 16

Collision resolution strategies:

1. Linear probing

2. Double hashing

LPHashTable<K,V> class
A HashTable implementation that uses linear probing as a collision resolution strategy.

 //Storage for our LPHashTable.

 std::pair<K, V>** table;

 /** Flags for whether or not to probe forward when looking at a particular cell in the table. This is a
dynamic array of booleans that represents if a slot is (or previously was) occupied. This allows us determine
whether or not we need to probe forward to look for our key. */

 bool* should_probe; //why do we need this?

 /**Helper function to determine the index where a given key lies in the LPHashTable. If the key does not
exist in the table, it will return -1.*/

 int findIndex(const K& key) const;

// inherited from HashTable

 virtual void resizeTable();

LPHashTable<K,V> - insert(key):

14 31 12 27

Hash function: h(key, size) = key % size

Size =7

Insert: 33;
i = h(key = 33, size = 7) = 33 % 7 = 5

14 33 31 12 27

Calculate i=(i+1) mod size, until array[i] becomes an empty slot:
i = (5+1) % 7 = 6
i = (6+1) % 7 = 0
i = (0+1) % 7 = 1

findIndex(33)

Hash function: h(key, size) = key % size

1. i = h(33, 7);
2. if (array[i] == 33) return i;
3. Calculate: i=(i+1) mod size;

• if (array[i] == 33) return i;
• if (array[i] == empty slot)

return ‘element not in the table’

Is this correct?

14 33 31 12 27

findIndex(33)

14 33 31 12 27 Hash function: h(key, size) = key % size

1. i = h(33, 7);
2. if (array[i] == 33) return i;
3. Calculate: i=(i+1) mod size;

• if (array[i] == 33) return i;
• if (array[i] == empty slot)

return ‘element not in the table’

What if we delete 14 before find(33)?

33 31 12 27

Is this correct?

findIndex(33)

Hash function: h(key, size) = key % size

Probe until you find your element;
Stop if you find empty index where nothing was
inserted from the start.

T T F T F T T

14 33 31 12 27

This is why we need: bool* should_probe;

findIndex(33)

Hash function: h(key, size) = key % size

Probe until you find your element;
Stop if you find empty index where nothing was
inserted from the start.

T T F T F T T

33 31 12 27

This is why we need: bool* should_probe;

Removing 14 doesn’t remove
should_probe=True!

LPHashTable<K,V> class
A HashTable implementation that uses linear probing as a collision resolution strategy.

ResizeTable follows same logic as in Separate changing table.

What else do you have to resize apart from resizing hash table?

LPHashTable<K,V> class
A HashTable implementation that uses linear probing as a collision resolution strategy.

ResizeTable follows same logic as in Separate changing table.

What else do you have to resize apart from resizing hash table?
 resize to new size should_probe array.

Remember: Hash value of every element will change once
we resize the table (since size is changing). So we need to
calculate new hash value for each element and insert in them
in the resized container in the proper place.

DHHashTable<K,V> class
A HashTable implementation that uses double hashing as a collision resolution strategy.

Second hash function is declared in hashes.h: secondary_hash

Check bucket Iteration

4 0

7 1

10 2

0 3
Let’s say we want to insert 12, h(1) = 4, h(2) = 3, and the size is 13

Why would you use double hashing instead of linear probing?

Double hashing:

S = { 16, 8, 4, 13, 29, 11, 22 }
h1(k) = k % 7
h2(k) = 5 – (k % 5)

8 16 4 13
8 16 29 4 13

8 16 29 4 11 13
22 8 16 29 4 11 13

DHHashTable<K,V> class
A HashTable implementation that uses double hashing as a collision resolution strategy.

Implementation for functions in DHHashTable is very similar to LPHashTable.

Try to identify parts of functions that will be affected by double hashing.

