Data Structures

Stacks and Queues

CS 225 September 10, 2025
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Exam 1 (2/09 — 2/11)

Autograded MC and one coding question
Manually graded short answer prompt
Practice exam will be released on PL
Topics covered can be found on website

Register now

https://courses.engr.illinois.edu/cs225/exams/

https://courses.engr.illinois.edu/cs225/exams/

Preparing for Exams

Make sure you understand the coding assignments

Review lecture slides — especially review slides! @

Take a look at‘staff notes’— added to website for past lectures

Do the practice exam before watching practice exam solution video

Learning Objectives

Discuss amortized analysis
Consider extensions to lists (data structure tradeoffs)
Introduce the stack and the queue data structure

Introduce and explore iterators

Array List

A B C D E

! ! f

data size capacity

In C++, vector is implemented as:
1) Data: Stored as a pointer to array start
2) Size: Stored as a pointer to the next available space

3) Capacity: Stored as a pointer past the end of the array

Array List: Not at capacity

C S 2 2 5
@Front @Back @Index
Insert O(n) O(1) O(n)
Delete O(n) O(1) O(n)

Resize Strategy: +2 elements every time

Resize Strategy: +2 elements every time

N2 + 2N

Total copies for N inserts:

Amortized: Big O:
Precise total work over N calls Upperbound on worst case

Resize Strategy: x2 elements every time

Resize Strategy: x2 elements every time

A

A

B

A

B

C

D

1) How many copy calls per reallocation?

For reallocation i, 2! copy calls are made

2) Total reallocations for N objects?

A

B

C

D

E

F

G

H

k = final realloc needed = [log,n]

Total number of copy calls:

Resize Strategy: x2 elements every time

A

A

B

A

B

C

D

1) How many copy calls per reallocation?

For reallocation i, 2! copy calls are made

2) Total reallocations for N objects?

A

B

C

D

E

F

G

H

k = final realloc needed = [log,n]

k
Total number of copy calls: Z 2t =2k _q

1=0

... For N objects: 2n — 1

Resize Strategy: x2 elements every time

Total copies for ninserts: 2n — 1

Amortized: Big O:
Precise total work over N calls Upperbound on worst case

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn (Doubling Size)

20 A
) /\/_/\ A
o<

0 20

List Implementation
_ [simgiylinkedlst JAmay

Look up arbitrary location

Insert after given element

Remove after given element

Insert at arbitrary location

Remove at arbitrary location

Search for an input value

Thinking critically about lists: tradeoffs

The implementations shown are foundational (simple).

Can we make our lists better at some things? What is the cost?

Thinking critically about lists: tradeoffs

Getting the size of a linked list has a Big O of:

R

cl &6 sl 6 |2 6 |76 7 | &

head
_—>None

Thinking critically about lists: tradeoffs

head _ r

head r

'Y

'Y

'Y

6

0

S/,

Thinking critically about lists: tradeoffs

14

14

Thinking critically about lists: tradeoffs

head _ 1

'Y

/Q

I

«

'Y

'Y

’>¢

\

Thinking critically about lists: tradeoffs

As we progress in the class, we will see that O(n) isn't very good.

Take searching for a specific list value:

Thinking critically about lists: tradeoffs

Can we make a’list’ that is O(1) to insert and remove?

Stack Data Structure

A stack stores an ordered collection of objects (like a list)

However you can only do three* operations:
Push: Put an item on top of the stack

Pop: Remove the top item of the stack

Top: Return the top item of the stack

push(3) ; push(5); pop(); push(2)

Top

#include <stack>

int main() {
stack<int> stack;
stack.push (3) ;
stack.push (8) ;
stack.push (4) ;
stack.pop() ;
stack.push(7) ;
stack.pop() ;
stack.pop() ;

Stack Data Structure

C++ has a built-in stack

Underlying implementation is vector or deque

RPROoOoOwWwWoOoOJdJoULbdWMNR

B

Stack Data Structure

Push(X) isequivalentto...

Stack Data Structure

Push(X) isequivalentto insertBack(X)
*size = X;

size++;

Stack Data Structure

Pop() isequivalentto...

Stack Data Structure

Pop() isequivalentto removeBack()
size--;

T tmp = *size;

Stack Data Structure

Top() istricky — remember size points to next available space!

return *(size - 1);

Stack ADT
e [Order]:

e [Implementation]:

e [Runtime]:

Queue Data Structure
Front

A queue stores an ordered collection of objects (like a list)

However you can only do three* operations:

Enqueue: Put an item at the back of the queue

Dequeue: Remove the front item of the queue

Front: Return the front item of the queue

enqueue (3) ; enqueue (5) ; dequeue(); enqueue (2)

Queue Data Structure

The queue is a first in — first out data structure (FIFO)

What data structure excels at removing from the front?

Can we make that same data structure good at inserting at the end?

Queue Data Structure

The C++ implementation of a queue is also a vector or deque — why?

Engineering vs Theory Efficiency

Time x1 billion

L1 cache reference 0.5 seconds
Branch mispredict 5 seconds
L2 cache reference 7 seconds
Mutex lock/unlock 25 seconds

100 seconds

Main memory reference

Compress 1K bytes 50 minutes
Send 2K bytes over 1 Gbps network 5.5 hours
SSD random read 1.7 days
Read 1 MB sequentially from memory 2.9 days
Read 1 MB sequentially from SSD 11.6 days
Disk seek 16.5 weeks
Read 1 MB sequentially from disk 7.8 months
Above two together 1 year
Send packet CA->Netherlands->CA 4.8 years

Like
Heartbeat @
Yawn (&)
Long yawn (&) &) &
Make coffee ==
Brush teeth

TV show
(Brief) Night's sleep ks
Weekend
Long weekend

2 weeks for delivery ﬁ
Semester

Human gestation «_*

PhD. @

(Care of https://gist.github.com/hellerbarde/2843375)

https://gist.github.com/hellerbarde/2843375

Engineering vs Theory Efficiency

Time x1 billion

L1 cache reference 0.5 seconds Heartbeat @

Main memory reference 100 seconds Brush teeth

SSD random read 1.7 days Weekend

16.5 weeks Semester

Send packet CA->Netherlands->CA 4.8 years Ph.D. @

(Care of https://gist.github.com/hellerbarde/2843375)

https://gist.github.com/hellerbarde/2843375

g.enqueue(8);

Queue Data Structure g.enqueue(4);

g.dequeue();
What do we need to track to maintain a queue with an array list?

Queue Data Structure

Unlike the array list, it is easier to implement a Queue using unsigned ints

Queue.h

1 | #pragma once

2

3 | template <typename T>
4 | class Queue {

5 public:

6 void enqueue (T e) ;
7 T dequeue() ;

8 bool isEmpty() ;

9
10 private:
11 T *data ;
12 unsigned size ;
13 unsigned capacity ;
14 unsigned front ;

(Circular) Queue Data Structure

Queue.h

WoOoOJdJoUITdWN =

#pragma once

template <typename T>
class Queue {
public:
void enqueue (T e) ;
T dequeue() ;
bool isEmpty () ;

private:
T *data ;
unsigned capacity ;
unsigned size ;
unsigned front ;

Fr(int
@@=
I_IS'
1ze

Frcint
@ @y
— Size

Queue<int> q;
g.enqueue(3);
g.enqueue(8);
g.enqueue(4);
g.dequeue();

g.enqueue(7);
g.dequeue();

g.dequeue();

g.enqueue(2);
g.enqueue(l);
g.enqueue(3);
g.enqueue(5);
g.dequeue();

g.enqueue(9);

Enqueue(D):

Dequeue():

Size:

Front: Capacity:

Queue<int> q;

Al B | C g.enqueue(D);
g.dequeue();
g.dequeue();

. ¢) q.dequeue();
Enqueue(D): Add data to ‘back’ of queue . dequeue().
Insert D at index (size+front) % capacity q.enqueue(E);

size++ (as long as size != capacity)
Dequeue(): Remove data at index front
front = (front+l) % capacity
size-- (as long as size != 09)

Size: 3
Front: 3 Capacity: 6

Queue Data Structure: Resizing

Queue<char> q;

g.enqueue(d);
g.enqueue(a);
g.enqueue(y);
g.enqueue(i);
g.enqueue(s);

Queue Data Structure: Resizing

Queue<char> q;

g.enqueue(d);
g.enqueue(a);
g.enqueue(y);
g.enqueue(i);
g.enqueue(s);

Queue ADT
e [Order]:

e [Implementation]:

e [Runtime]:

lterators

We want to be able to loop through all elements for any underlying
implementation in a systematic way

> ">¢

1NN
“e

™
e

lterators

We want to be able to loop through all elements for any underlying
implementation in a systematic way

N T

—“"GD ListNode *

>
8 (2 (3 (curr

unsigned
index

Some form
of

Do
"o

(X, ¥y, 2)

‘\\]'
"

lterators

Iterators provide a way to access items in a container without exposing
the underlying structure of the container

A
vy

Cube: :Iterator start = myCube.begin() ;

while (it '= myCube.end()) {
std::cout << *it <<« " ";
it++;

SJSo ok WMNhR

lterators

For a class to implement an iterator, it needs two functions:

Iterator begin()

Iterator end()

lterators

The actual iterator is defined as a class inside the outer class:

1.1t must be of base class std: :iterator

2. It must implement at least the following operations:
Iterator& operator ++()
const T & operator *()

bool operator !=(const Iterator &)

lterators

Here is a (truncated) example of an iterator:

1| template <class T>
2| class List {
3
4

class ListIterator : public
std: :iterator<std::bidirectional iterator tag, T> {

5 public:

6

7 ListIterator& operator++() ;
8

o] ListIterator& operator-- ()
10
11 bool operator!=(const ListIteratoré& rhs);
12
13 const T& operator*() ;
14 };
15
16 ListIterator begin() const;
17
18 ListIterator end() const;

19|}

stiList.cpp

WoOoOJoonUld WN =

#include <list>
#include <string>
#include <iostream>

struct Animal {
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you", bool big = true)
name (name) , food(food), big(big) { /* nothing */ }
}i

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

zoo.push back(qg) ;
zoo.push back (p) ; // std::vector’s insertAtEnd
zoo.push back (b) ;

for (std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it) {
std: :cout << (*it) .name << " " << (*it) .food << std::endl;
}

return O;

WoOoOJoonUld WN =

std: :vector<Animal> zoo;

/* Full text snippet */

for (std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it) {
std: :cout << (*it) .name << " " << (*it) .food << std::endl;

}

/* Auto Snippet */

for (auto it = zoo.begin(); it !'= zoo.end; ++it) ({
std: :cout << animal.name << " " << animal.food << std::endl;
}

/* For Each Snippet */

for (const Animal & animal : zoo) {
std: :cout << animal.name << " " << animal.food << std::endl;

}

Trees Q

“The most important non-linear data
structure in computer science.”
- David Knuth, The Art of Programming, Vol. 1

A tree is:

