
Department of Computer Science

Data Structures
Stacks and Queues

September 10, 2025 CS 225 
Brad Solomon



Exam 1 (2/09 — 2/11)

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam will be released on PL

Topics covered can be found on website

Register now

https://courses.engr.illinois.edu/cs225/exams/

https://courses.engr.illinois.edu/cs225/exams/


Preparing for Exams
Make sure you understand the coding assignments

Review lecture slides — especially review slides!

Do the practice exam before watching practice exam solution video

Take a look at ‘staff notes’ — added to website for past lectures



Learning Objectives

Introduce the stack and the queue data structure

Introduce and explore iterators

Discuss amortized analysis

Consider extensions to lists (data structure tradeoffs)



Array List
A B C D E

1) Data: Stored as a pointer to array start 

2) Size: Stored as a pointer to the next available space

In C++, vector is implemented as:

3) Capacity: Stored as a pointer past the end of the array

data_ size_ capacity_



Array List: Not at capacity

C S 2 2 5

Insert

Delete

@Front @Index@Back

O(1)

O(1)

O(n)

O(n)

O(n)

O(n)



Resize Strategy: +2 elements every time



Resize Strategy: +2 elements every time

Total copies for N inserts: 
N2 + 2N

4

Amortized: Big O:
Precise total work over N calls Upperbound on worst case 



Resize Strategy: x2 elements every time



Resize Strategy: x2 elements every time
1) How many copy calls per reallocation?

2) Total reallocations for N objects?

A

A B

A B C D

A B C D E F G H

Total number of copy calls:

For reallocation i,  copy calls are made2i

k = final realloc needed = ⌈log2n⌉



Resize Strategy: x2 elements every time
1) How many copy calls per reallocation?

2) Total reallocations for N objects?

A

A B

A B C D

A B C D E F G H

Total number of copy calls:

For reallocation i,  copy calls are made2i

k

∑
i=0

2i = 2k+1 − 1

k = final realloc needed = ⌈log2n⌉

2n − 1… For N objects:



Resize Strategy: x2 elements every time
Total copies for n inserts: 2n − 1

Amortized: Big O:
Precise total work over N calls Upperbound on worst case 



List Implementation
Singly Linked List Array

Look up arbitrary location

Insert after given element

Remove after given element

Insert at arbitrary location

Remove at arbitrary location

Search for an input value



Thinking critically about lists: tradeoffs
The implementations shown are foundational (simple).

Can we make our lists better at some things? What is the cost?



Thinking critically about lists: tradeoffs

C S 2 7 7
None

head

Getting the size of a linked list has a Big O of: 



Thinking critically about lists: tradeoffs

1 2 3 4 5
Ø

head_

4 2 5 3 1
Ø

head_



Thinking critically about lists: tradeoffs

2 7 5 9 7 14 1 0 8 3

0 1 2 3 5 7 7 8 9 14



Thinking critically about lists: tradeoffs

1 2 3 4 5
Ø

head_

Ø



Thinking critically about lists: tradeoffs

As we progress in the class, we will see that  isn’t very good.O(n)

Take searching for a specific list value:

2 7 5 9 7 14 1 0 8 3

0 1 2 3 5 7 7 8 9 14



Thinking critically about lists: tradeoffs
Can we make a ‘list’ that is O(1) to insert and remove?



Stack Data Structure
A stack stores an ordered collection of objects (like a list) 

However you can only do three* operations:

Push: Put an item on top of the stack

Pop: Remove the top item of the stack

push(3); push(5); pop(); push(2)

Top

Top: Return the top item of the stack



Stack Data Structure
C++ has a built-in stack

Underlying implementation is vector or deque

#include <stack> 
int main() { 
stack<int> stack; 
stack.push(3); 
stack.push(8); 
stack.push(4); 
stack.pop(); 
stack.push(7); 
stack.pop(); 
stack.pop(); 

} 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 



Stack Data Structure

A B C D

Push(X) is equivalent to …



Stack Data Structure

A B C D

Push(X) is equivalent to insertBack(X)

*size = X;

size++;



Stack Data Structure

A B C D

Pop() is equivalent to…



Stack Data Structure

A B C D

Pop() is equivalent to removeBack()

size--;

T tmp = *size;



Stack Data Structure

A B C D

Top() is tricky — remember size points to next available space!

return *(size - 1);



• [Order]: 

• [Implementation]: 

• [Runtime]:

Stack ADT



Queue Data Structure
A queue stores an ordered collection of objects (like a list) 

However you can only do three* operations:

Enqueue: Put an item at the back of the queue

Dequeue: Remove the front item of the queue

enqueue(3); enqueue(5); dequeue(); enqueue(2)

Front

Front: Return the front item of the queue



Queue Data Structure
The queue is a first in — first out data structure (FIFO)

What data structure excels at removing from the front?

Can we make that same data structure good at inserting at the end?



Queue Data Structure
The C++ implementation of a queue is also a vector or deque — why?



Engineering vs Theory Efficiency
Time x1 billion Like

L1 cache reference 0.5 seconds Heartbeat 💓

Branch mispredict 5 seconds Yawn 😲

L2 cache reference 7 seconds Long yawn 😲  😲  😲

Mutex lock/unlock 25 seconds Make coffee ☕

Main memory reference 100 seconds Brush teeth 

Compress 1K bytes 50 minutes TV show 📺

Send 2K bytes over 1 Gbps network 5.5 hours (Brief ) Night's sleep 🛌

SSD random read 1.7 days Weekend

Read 1 MB sequentially from memory 2.9 days Long weekend

Read 1 MB sequentially from SSD 11.6 days 2 weeks for delivery 📦

Disk seek 16.5 weeks Semester

Read 1 MB sequentially from disk 7.8 months Human gestation 🐣

Above two together 1 year 🌍  ☀

Send packet CA->Netherlands->CA 4.8 years Ph.D. 🎓

(Care of https://gist.github.com/hellerbarde/2843375)

https://gist.github.com/hellerbarde/2843375


Engineering vs Theory Efficiency
Time x1 billion Like

L1 cache reference 0.5 seconds Heartbeat 💓

Branch mispredict 5 seconds Yawn 😲

L2 cache reference 7 seconds Long yawn 😲  😲  😲

Mutex lock/unlock 25 seconds Make coffee ☕

Main memory reference 100 seconds Brush teeth 

Compress 1K bytes 50 minutes TV show 📺

Send 2K bytes over 1 Gbps network 5.5 hours (Brief ) Night's sleep 🛌

SSD random read 1.7 days Weekend

Read 1 MB sequentially from memory 2.9 days Long weekend

Read 1 MB sequentially from SSD 11.6 days 2 weeks for delivery 📦

Disk seek 16.5 weeks Semester

Read 1 MB sequentially from disk 7.8 months Human gestation 🐣

Above two together 1 year 🌍  ☀

Send packet CA->Netherlands->CA 4.8 years Ph.D. 🎓

(Care of https://gist.github.com/hellerbarde/2843375)

https://gist.github.com/hellerbarde/2843375


Queue Data Structure
What do we need to track to maintain a queue with an array list?

q.enqueue(8); 
q.enqueue(4); 
q.dequeue();



Queue Data Structure
Unlike the array list, it is easier to implement a Queue using unsigned ints

#pragma once 

template <typename T> 
class Queue { 
  public: 
    void enqueue(T e); 
    T dequeue(); 
    bool isEmpty(); 

  private: 
    T *data_; 
    unsigned size_; 
    unsigned capacity_; 
    unsigned front_; 
};

Queue.h
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15



#pragma once 

template <typename T> 
class Queue { 
  public: 
    void enqueue(T e); 
    T dequeue(); 
    bool isEmpty(); 

  private: 
    T *data_; 
    unsigned capacity_; 
    unsigned size_; 
    unsigned front_; 
};

Queue.h
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15

Front

Size

Front

Size

(Circular) Queue Data Structure



Queue<int> q; 
q.enqueue(3); 
q.enqueue(8); 
q.enqueue(4); 
q.dequeue(); 
q.enqueue(7); 
q.dequeue(); 
q.dequeue(); 
q.enqueue(2); 
q.enqueue(1); 
q.enqueue(3); 
q.enqueue(5); 
q.dequeue(); 
q.enqueue(9);

Size:

Front: Capacity:

Enqueue(D):

Dequeue():



Queue<int> q; 
… 
q.enqueue(D); 
q.dequeue(); 
q.dequeue(); 
q.dequeue(); 
q.dequeue(); 
q.enqueue(E);

Size: 3

Front: 3 Capacity: 6

Enqueue(D): Add data to ‘back’ of queue

Dequeue():

A B C

Insert D at index (size+front) % capacity
size++ (as long as size != capacity)

Remove data at index front
front = (front+1) % capacity
size-- (as long as size != 0)



Queue<char> q; 
… 
q.enqueue(d); 
q.enqueue(a); 
q.enqueue(y); 
q.enqueue(i); 
q.enqueue(s);

m o n

Queue Data Structure: Resizing



Queue<char> q; 
… 
q.enqueue(d); 
q.enqueue(a); 
q.enqueue(y); 
q.enqueue(i); 
q.enqueue(s);

m o n

Queue Data Structure: Resizing



• [Order]: 

• [Implementation]: 

• [Runtime]:

Queue ADT



Iterators

8 2 5
Ø

We want to be able to loop through all elements for any underlying 
implementation in a systematic way



8 2 5
Ø

Cur. Location Cur. Data Next

ListNode * 
curr

unsigned 
index

Some form 
of 

(x, y, z)

Iterators
We want to be able to loop through all elements for any underlying 
implementation in a systematic way



Iterators
Iterators provide a way to access items in a container without exposing 
the underlying structure of the container

Cube::Iterator start = myCube.begin();  

while (it != myCube.end()) {  
    std::cout << *it << " ";  
    it++; 
}

1 
2 
3 
4 
5 
6 
7 



Iterators
For a class to implement an iterator, it needs two functions:

Iterator begin()

Iterator end()



Iterators
The actual iterator is defined as a class inside the outer class:

Iterator& operator ++()

1. It must be of base class std::iterator

2. It must implement at least the following operations:

const T & operator *()

bool operator !=(const Iterator &)



Iterators

template <class T> 
class List { 

    class ListIterator : public 
std::iterator<std::bidirectional_iterator_tag, T> { 
      public: 

        ListIterator& operator++(); 

        ListIterator& operator--() 

        bool operator!=(const ListIterator& rhs); 

        const T& operator*(); 
    }; 

    ListIterator begin() const; 

    ListIterator end() const; 
}; 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Here is a (truncated) example of an iterator:



#include <list> 
#include <string> 
#include <iostream> 

struct Animal { 
  std::string name, food; 
  bool big; 
  Animal(std::string name = "blob", std::string food = "you", bool big = true) : 
    name(name), food(food), big(big) { /* nothing */ }  
}; 

int main() { 
  Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear"); 
  std::vector<Animal> zoo; 

  zoo.push_back(g); 
  zoo.push_back(p);   // std::vector’s insertAtEnd 
  zoo.push_back(b); 

  for ( std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it ) { 
    std::cout << (*it).name << " " << (*it).food << std::endl; 
  } 

  return 0; 
}

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25

stlList.cpp



std::vector<Animal> zoo; 

/* Full text snippet */ 

  for ( std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it ) { 
    std::cout << (*it).name << " " << (*it).food << std::endl; 
  } 

/* Auto Snippet */ 

  for ( auto it = zoo.begin(); it != zoo.end; ++it ) { 
    std::cout << animal.name << " " << animal.food << std::endl; 
  } 

/* For Each Snippet */ 

  for ( const Animal & animal : zoo ) { 
    std::cout << animal.name << " " << animal.food << std::endl; 
  } 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25



Trees
“The most important non-linear data 
structure in computer science.” 
- David Knuth, The Art of Programming, Vol. 1 

A tree is: 

•   

•  


