Data Structures

Array Lists

CS 225 January 30, 2026
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Review the importance of index in a linked list
Finish implementing the List ADT (as a linked list)
Discuss data variables for implementing array lists

Explore the List ADT (as an array list)

List ADT

A list is an ordered collection of items
Items can be either heterogeneous or homogenous
The list can be of a fixed size or is resizable

A minimal set of operations (that can be used to create all others):
1. Insert

2. Delete

3. IsEmpty

4. getData

5. Create an empty list

List Implementations

1. Linked List

head\
c € s | &6 216 |2 & 5|6

—None

2. Array List

Where we left off...

head

D

C

'Y

'Y

'Y

'Y

—None

1. Singly linked list only accesses forward —>

2.To insert in arbitrary position we need to access what value?

List.hpp

OWCoOoOJdJonUldWDN =

10

12

// Iterative Solution:
template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index) ({
if (index == 0) { return head; }
else {
ListNode *curr = head;
for (unsigned i = 0; i < index - 1; i++) {
curr = curr->next;
}
return curr->next;
}
}

head

N

—None

Comparing pointer to reference-to-pointer

">

head_ € | A | € B | & cl6 olé€ lel&

ListNode * curr = _index(3);

We can access curr->data and curr->next but not previous.next

ListNode *& curr = index(3);
We can access curr.data, curr.next and...

curr == previous.next

0

Comparing pointer to reference-to-pointer

0

head € | A | € s | 61 |c|& |ol|é e

ListNode * curr = _index(3);

curr = new ListNode (x) ;

ListNode *& curr = index(3);

curr = new ListNode (x) ;

Linked List: insert(data, index)

1) Get reference to previous node’s next

ListNode *& curr = index(index);

2) Create new ListNode
ListNode * tmp = new ListNode (data) ;

3) Update new ListNode’s next
tmp->next = curr;

4) Modify the previous node to point to new ListNode

curr = tmp;

0

head € | c | € s | &€ 2|6 2|6

OWCoOoOJdJonUldWN =

Lets compare...

List.hpp

template <typename T>
void List<T>::insertAtFront (const T& t)

{
ListNode *tmp = new ListNode(t) ;
tmp->next = head ;

head = tmp;

OWCoOoOJdJonUldWN =

template <typename T>
void List<T>::insert(const T & data,
unsigned index) ({

ListNode *& curr = index(index) ;

ListNode * tmp = new ListNode (data) ;

tmp->next = curr;

curr = tmp;

What is the Big O of insert? List.hpp

1
2 | template <typename T>
3 |void List<T>::insert(const T & data,
4 |unsigned index) {
5
6
7
8 ListNode *& curr = index(index) ;
9
10
11
12 ListNode * tmp = new ListNode (data) ;
13
14
15
16 tmp->next = curr;
17
18 [w] e [w]
19 e Ly
20 curr = tmp; -
21 |} i
22 [w]
Join Code: 225

List Random Access []

Given a list L, what operations canwedoon L[]?

What return type should this function have?

List.hpp

48
49
50
51
52
53
54
55
56
57
58

template <typename T>

T & List<T>::operator[] (unsigned index) ({

head_<"—___ C 1"_—_—>

————>Q§

List.hpp

48
49
50
51
52
53
54
55
56
57
58

template <typename T>

T & List<T>::operator[] (unsigned index) ({

ListNode *&new_node =

return new_node—>data;

_index (index) ;

w454
s

Join Code: 225

head ‘r————- C ‘r—

What is the Big O of random access?

————>96

Linked List: remove (<parameters>)

What input parameters make sense for remove?

’->¢

s > R o E—
head & | Al & B | & c|l & D | &

Linked List: remove(ListNode *& n)

head r

C

'Y

S

'Y

">

2

'Y

’»

2

'Y

—

0

List.hpp

103 | template <typename T>

104 | T List<T>::remove (ListNode *& node) {
105
106 | ListNode * temp = node;
107 | node = node->next;

108 | T data = temp->data;
109 | delete temp;

110 | return data;

111
112 |}

head_rA(’>B (’-»c (’—>D & |t &

’->¢

Linked List: remove (T & data)

mm— o B
head r c & s | & 2 | &

0

Linked List: remove

head € | c | € s

'Y

'Y

0

Running time for remove(ListNode *&)

Running time for remove (T & data)

Linked List Runtimes @

head_\
cl 6 |s|& 6 2|6 |s5|é&

—None

@Front @RefPointer @Index

Insert

Delete

Thinking critically about linked lists...

What common list use case lets us take advantage of O(1) edits?

What is the runtime to find an item of interest?

List Implementations

1. Linked List

head\
c € s | &6 216 |2 & 5|6

—None

2. Array List

Array List

An array is allocated as continuous memory.

Three values are necessary for efficient array usage:

Array List

f ! f

data size capacity

In C++, vector is implemented as:
1) Data: Stored as a pointer to array start
2) Size: Stored as a pointer to the next available space

3) Capacity: Stored as a pointer past the end of the array

List.h

1 | #pragma once
2

3 | template <typename T> A B C
4 | class List {
5 | public:

[* -—= */
25 | private:
26 T *data ;
27
28 T *size ;
29

30 T *capacity ;

[* ——= %/

Iy

If | want to know the number of items in the array:

List.h
1 | #pragma once
2
3 | template <typename T> A
4 | class List {
5 | public:
[* --- */

25 private:
26 T *data ;

28 T *size ;
30 T *capacity ;

[* ——= %/

Iy

How do | know if I'm at capacity?

Array List: []

C S 2

Array List: insertFront(data)

C S 2 2 5

Array List: insertBack(data)

C S 2 2 5

Array List: insert(data, index) @

C S 2 2 5

Array List: addspace(data)

N O S P A C E

