
Department of Computer Science

Data Structures
Array Lists

January 30, 2026 CS 225
Brad Solomon

Learning Objectives

Review the importance of index in a linked list

Finish implementing the List ADT (as a linked list)

Discuss data variables for implementing array lists

Explore the List ADT (as an array list)

List ADT
A list is an ordered collection of items

Items can be either heterogeneous or homogenous

The list can be of a fixed size or is resizable

A minimal set of operations (that can be used to create all others):
1. Insert

2. Delete

3. isEmpty

4. getData

5. Create an empty list

List Implementations
1. Linked List

2. Array List

C S 2 2 5
None

C S 2 2 5

head

Where we left off…

C S 2 2 5
None

head

1. Singly linked list only accesses forward —>

2. To insert in arbitrary position we need to access what value?

// Iterative Solution:
template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index) {
 if (index == 0) { return head; }
 else {
 ListNode *curr = head;
 for (unsigned i = 0; i < index - 1; i++) {
 curr = curr->next;
 }
 return curr->next;
 }
}

List.hpp
1
2
3
4
5
6
7
8
9

10
11
12

A B C D E
None

head

Comparing pointer to reference-to-pointer

A B C D E
Ø

head_

ListNode * curr = _index(3);

ListNode *& curr = _index(3);

We can access curr->data and curr->next but not previous.next

We can access curr.data, curr.next and...

curr == previous.next

Comparing pointer to reference-to-pointer

A B C D E
Ø

head_

ListNode * curr = _index(3);

ListNode *& curr = _index(3);

curr = new ListNode(x);

curr = new ListNode(x);

Linked List: insert(data, index)

C S 2 2 5
Ø

head_

1) Get reference to previous node’s next
 ListNode *& curr = _index(index);

2) Create new ListNode
 ListNode * tmp = new ListNode(data);

3) Update new ListNode’s next
 tmp->next = curr;

4) Modify the previous node to point to new ListNode
 curr = tmp;

template <typename T>
void List<T>::insert(const T & data,
unsigned index) {

 ListNode *& curr = _index(index);

 ListNode * tmp = new ListNode(data);

 tmp->next = curr;

 curr = tmp;
}

List.hpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

template <typename T>
void List<T>::insertAtFront(const T& t)
{
 ListNode *tmp = new ListNode(t);

 tmp->next = head_;

 head_ = tmp;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Lets compare…

template <typename T>
void List<T>::insert(const T & data,
unsigned index) {

 ListNode *& curr = _index(index);

 ListNode * tmp = new ListNode(data);

 tmp->next = curr;

 curr = tmp;
}

List.hpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

What is the Big O of insert?

Join Code: 225

List Random Access []
Given a list L, what operations can we do on L[]?

What return type should this function have?

template <typename T>
T & List<T>::operator[](unsigned index) {

}

List.hpp
48
49
50
51
52
53
54
55
56
57
58

C S 2 2 5
Ø

head_

template <typename T>
T & List<T>::operator[](unsigned index) {

ListNode *&new_node = _index(index);

return new_node->data;

}

List.hpp
48
49
50
51
52
53
54
55
56
57
58

C S 2 2 5
Ø

head_

What is the Big O of random access?

Join Code: 225

Linked List: remove(<parameters>)
What input parameters make sense for remove?

A B C D E
Ø

head_

Linked List: remove(ListNode *& n)

C S 2 2 5
Ø

head_

template <typename T>
T List<T>::remove(ListNode *& node) {

ListNode * temp = node;
node = node->next;
T data = temp->data;
delete temp;
return data;

}

List.hpp
103
104
105
106
107
108
109
110
111
112

A B C D E
Ø

head_

Linked List: remove(T & data)

C S 2 2 5
Ø

head_

Linked List: remove

C S 2 2 5
Ø

head_

Running time for remove(ListNode *&)

Running time for remove(T & data)

Linked List Runtimes

C S 2 2 5
None

head_

Insert

Delete

@Front @Index@RefPointer

Thinking critically about linked lists…

What common list use case lets us take advantage of O(1) edits?

What is the runtime to find an item of interest?

List Implementations
1. Linked List

2. Array List

C S 2 2 5
None

C S 2 2 5

head

Array List

Three values are necessary for efficient array usage:

1)

2)

3)

An array is allocated as continuous memory.

Array List
A B C D E

1) Data: Stored as a pointer to array start

2) Size: Stored as a pointer to the next available space

In C++, vector is implemented as:

3) Capacity: Stored as a pointer past the end of the array

data_ size_ capacity_

#pragma once

template <typename T>
class List {
public:
 /* --- */
private:
 T *data_;

 T *size_;

 T *capacity_;

 /* --- */
};

List.h
1
2
3
4
5
…

25
26
27
28
29
30
…

A B C

If I want to know the number of items in the array:

#pragma once

template <typename T>
class List {
public:
 /* --- */
private:
 T *data_;

 T *size_;

 T *capacity_;

 /* --- */
};

List.h
1
2
3
4
5
…

25
26
27
28
29
30
…

A B C D E F

How do I know if I’m at capacity?

Array List: []

C S 2 2 5

Array List: insertFront(data)

C S 2 2 5

Array List: insertBack(data)

C S 2 2 5

Array List: insert(data, index)

C S 2 2 5

Array List: addspace(data)

N O S P A C E

