Data Structures

Linked Lists & (maybe) Array Lists
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Learning Objectives

Review the importance of index in a linked list

Finish implementing the List ADT (as a linked list)
/\/\/

Discuss data variables for implementing array lists Q

Explore the List ADT (as an array list)




List ADT

A list is an ordered collection of items
Items can be either heterogeneous or homogenous
The list can be of a fixed size or is resizable

A minimal set of operations (that can be used to create all others):
1. Insert

2. Delete

3. IsEmpty

4. getData \/

5. Create an empty list




List Imilementations
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1. Singly linked list only accesses forward —>
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2.To insert in arbitrary position we need to access what value?
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List.hpp

1| // Iterative Solution:
2| template <typename T>
3| typename List<T>: : ListNode( *&)List<T>: unsigned index) ({
4 if (index == 0) { return head; }
5 else {
6 ListNode *curr = head; ¢ o) N &
7 for (unsigned i = 0; i < index - 1; i++) { é&”_—
8 curr = curr->next;
Y < o(1)
10 return curr->next;
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Comparing pointer to reference-to-pointer
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ListNode *_ curr = index(3);
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We can access curr->data and curr->next but not previous.next

ListNode *@ curr = index(3);
We can access curr.data, curr.next and...

curr == previous.next




Comparing pointer to reference-to-pointer
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ListNode * curr = _index(3);

curr = new ListNode (x) ;

ListNode *& curr = index(3);

curr = new ListNode (x) ;




Linked List: insert(data, index)
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1) Get reference to previous node’s next /\9 l \E;
ListNode curr = _index (index) ;

ListNode * tmp = new ListNode (data) ;

3) Update new ListNode’s next
tmp->next = curr;

4) Modify the previous node to point to new ListNocﬂ

curr = tmp;

0

. 4 (uf(>
2) Create new ListNode \ J\/db& (é«ﬁ ,



OWCoOoOJdJonUldWN =

Lets compare...

List.hpp

template <typename T>
void List<T>::insertAtFront (const T& t)

{
ListNode *tmp = new ListNode(t) ;
tmp->next = head ;

head = tmp;
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template <typename T>
void List<T>::insert(const T & data,
unsigned index) ({

ListNode *& curr = index(index) ;

ListNode * tmp = new ListNode (data) ;

tmp->next = curr;

curr = tmp;




What is the Big O of i
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List.hpp

template <typename T>
void List<T>::insert(const T & data,

unsigned index) ({
—
ListNode *& curr = index(index) ;
ListNode * tmp = new ListNode (data) ;
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tmp->next = curr;
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curr = tmp;
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List Random Access []1 9ot Dyig ()

Given a list L, What¥operations canwedoonlL|[]?
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What return type should this function have? "%ﬁ
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List.hpp
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template <typename T>
T(?gList<T>::operator[](unsigned index) {
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List.hpp

52| ListNode *&new node = _index(index) ;
53

54 .
55| return new node->data; Join Code: 225
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48| template <typename T>
49| T & List<T>::operator[] (unsigned index) { E __E
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What is the Big O of random access? O(V} 7
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Linked List: remove (<parameters>)

What input parameters make sense for remove?
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Linked List: remove (ListNode @n)
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template <typename T>

ListNode * temp = node;
node = node->next;

'T data = temp->data;
delete temp;

' return data;

}
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Linked List: remove (T & data) o T b
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Linked List: remove
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Running time for remove(ListNode *&)
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Linked List Runtimes @
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Thinking critically about linked lists. .
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What common list use case lets us take advantage of O(1) edits?
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List Implementations

1. Linked List
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Array List

An array is allocated as continuous memory.

Three values are necessary for efficient array usage:
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Array List \

IDERDDEN
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data size capacity

In C++, vector is implemented as:

1) Data: Stored as a pointer to array start

2) Size: Stored as a pointer to the next available space
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3) Capacity: Stored as a pointer past the end of the array

\

—~—~



List.h éqk'+, ‘TL

#pragma once =

class List {

public:
— 1 Y

25 | private: b <. ze
26 ata_;
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If | want to know the number of items in the array: s 7. - d-f
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List.h
#pragma once

1
2
3 | template <typename T> A B C D E F N
4 | class List { s
5 | public:
NV <€
25 | private: .
26 T *data ; Co’qwlf/
27
28 T *size ;
29
30 T *capacity ;
[* -—= %/
};

How do | know if I'm at capacity? ¥ <ize = = Capacty




Array List: [ ]




Array List: insertFront(data)
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Array List: insertBack(data)
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Array List: insert(data, index) @
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Array List: addspace(data)
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