Data Structures

Linked Lists & (maybe) Array Lists

CS 225 January 30, 2026
Brad Solomon

]“ AN

w S

N

UNIVERSITY OF

ILLINOIS . .=

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Review the importance of index in a linked list

Finish implementing the List ADT (as a linked list)
/\/\/

Discuss data variables for implementing array lists Q

Explore the List ADT (as an array list)

List ADT

A list is an ordered collection of items
Items can be either heterogeneous or homogenous
The list can be of a fixed size or is resizable

A minimal set of operations (that can be used to create all others):
1. Insert

2. Delete

3. IsEmpty

4. getData \/

5. Create an empty list

List Imilementations

head\
c € s | &6 216 |2 & 5|6

—None

Where we left off... L:ﬁf@; (fyPe ¢

head S opeyt (Hype List Wade ﬂ

X
/\\ \ > > B >
cl 6 s|é6 |2 6T @2 & 5 | & | None

—

1. Singly linked list only accesses forward —>
— TN——_

75 aly aexh

2.To insert in arbitrary position we need to access what value?

‘\

& 7}.,(PI(V‘-Wﬁ '\&)L Yo L ngerk |<cc1r‘0/\
G e Pevoaeyt wseh By (e

List.hpp

1| // Iterative Solution:
2| template <typename T>
3| typename List<T>: : ListNode(*&)List<T>: unsigned index) ({
4 if (index == 0) { return head; }
5 else {
6 ListNode *curr = head; ¢ o) N &
7 for (unsigned i = 0; i < index - 1; i++) { é&”_—
8 curr = curr->next;
Y < o(1)
10 return curr->next;
11| '} Q)
12} N C)(‘)
Freg /}
head hef€

L
\ — > 3’ T (’>None

Wzttt gets (rYus el

Comparing pointer to reference-to-pointer

head_C/.A(B(’»C (ﬁu & | (’—»¢
T

ListNode *_ curr = index(3);
7~ -

We can access curr->data and curr->next but not previous.next

ListNode *@ curr = index(3);
We can access curr.data, curr.next and...

curr == previous.next

Comparing pointer to reference-to-pointer

0

head € | A | € s | 61 |c|& |ol|é e

ListNode * curr = _index(3);

curr = new ListNode (x) ;

ListNode *& curr = index(3);

curr = new ListNode (x) ;

Linked List: insert(data, index)
nead_ & | c | & |s| € 2 @& J2|&

1) Get reference to previous node’s next /\9 l \E;
ListNode curr = _index (index) ;

ListNode * tmp = new ListNode (data) ;

3) Update new ListNode’s next
tmp->next = curr;

4) Modify the previous node to point to new ListNocﬂ

curr = tmp;

0

. 4 (uf(>
2) Create new ListNode \ J\/db& (é«ﬁ ,

OWCoOoOJdJonUldWN =

Lets compare...

List.hpp

template <typename T>
void List<T>::insertAtFront (const T& t)

{
ListNode *tmp = new ListNode(t) ;
tmp->next = head ;

head = tmp;

OWCoOoOJdJonUldWN =

template <typename T>
void List<T>::insert(const T & data,
unsigned index) ({

ListNode *& curr = index(index) ;

ListNode * tmp = new ListNode (data) ;

tmp->next = curr;

curr = tmp;

What is the Big O of i

o(1) /

Smal ()
o
_i el
\ L.(H(. 0
Uo0h> -+ =D
> D 7 A\
) *’:\\4‘1 @15 to o)

given list of size n)?

List.hpp

template <typename T>
void List<T>::insert(const T & data,

unsigned index) ({
—
ListNode *& curr = index(index) ;
ListNode * tmp = new ListNode (data) ;

Lo ()

el dl,
ofzl0
s

tmp->next = curr;
Join Code: 225

OO('J

curr = tmp;

! b)O(V

List Random Access []1 9ot Dyig ()

Given a list L, What¥operations canwedoonlL|[]?
Dget Ve O X = Usk [e) 7 e Vele
/

(/758\' Vawe () / Lt Ci] Y, I/ Set- \/dl‘/lQ

What return type should this function have? "%ﬁ

l gk T) cyhek 2 [E]
‘/ , LiNA [’Lgl\/ - Join Code: 225

List.hpp

48
49
50
51
52
53
54
55
56
57
58

template <typename T>
T(?gList<T>::operator[](unsigned index) {
QU\AM A L8

Ldide +X +"P-~_\/\a€)<(,"‘b°)‘3 O(M ‘o o)

(S

(e)fo (n ““'p‘? ()4“51/ Q)(l) Bz gkﬂgl\/
} (/‘I)t'(’) K35

head_o/. c/(’@(’>2 (’bz & | s (’>¢

— |
uQ ﬂ’ls s o [(eF o a S:P?r\-(\,(Vajzc,\j)\(“

/\}OT e Jalue d\l@lQ
/

Men/n)l

List.hpp

52| ListNode *&new node = _index(index) ;
53

54 .
55| return new node->data; Join Code: 225

56
57
58]}

48| template <typename T>
49| T & List<T>::operator[] (unsigned index) { E __E
50 e Ly
51 -
% 754

head_rc(’*s (’>2 (’>2 6 | 5| &

What is the Big O of random access? O(V} 7

’->¢

Linked List: remove (<parameters>)

What input parameters make sense for remove?
[T emang (VnSlned {/\(\Qx) (L

%D f\d\re> /[(,,,,,M(L‘\s’r/Ua)L %)

wwm s be
C emove (T P vq\uc>

\
1 Jole 4 /T bt £ hos

(

N

head_K-A (’B (’—C (/’»D (’—E (

C em ave < ListNole

’>¢

Linked List: remove (ListNode @n)
head € | c | € s

4

0

103
104
105
106

(108

(15

111
112

template <typename T>

ListNode * temp = node;
node = node->next;

'T data = temp->data;
delete temp;

' return data;

}

o(1)
o)

o0l e—— (Ipy O

o)

O(l)

j;}ist<T>::remove(ListNode *& node) {

o

Tongeqt

G (7 {-U//\

'\Q—j\/\’f{ \/"\’\\/ dors
Mok b by

tpe t7

ot

(etvin

Uava HL

(Fvs o loco]

Scape

————>96

head;.‘r’———- A

SH cluse Q.

Linked List: remove (T & data) o T b
5 camad we nde {w\; e Rovg g 1t
ble ftar doles 4 (2py

e e > e ’—"¢
head & | c | € s | & 2 | & 2 | & 5 | &
]
S fer! . :
e — ~ Stop whtn ol <= sl
— (pheat calls Fo 1 B S o Joi hp Wl € < '5+

Linked List: remove

g ——

0

head r C (S (/\(// 2 (" > 2 (

Running time for remove(ListNode *&)
L oll)

| Tt ()
G Thirl of s [ke (emoR Tiam T

Running time for remove(T & data)

L O(“)

Linked List Runtimes @

head_\
cl &6 sl & 1216 26 | s5|é&

@Front @RefPointer @Index vel
_ /____/ _ o
Insert O(') O(') @(Iy

Delete) 0 (I) C (ﬂ>

Thinking critically about linked lists. .

jmcosa{]: wat Yo (emdg CI' O}\E‘S

P
What common list use case lets us take advantage of O(1) edits?
% NS t Ned Yo walh Trough |:§\‘ Q(l/l)
wrf v) O(V))
[D = \ 3)-> O 7 12
0(.) <>(|) a(:) O(l)
What is the runtime to find an item of interest? g (,)

% IF ‘X- '('\:/\A \|’\"°w of :/\'}f‘lfs)r JW:A} (/vd.l/(/(\Omouo} NS

CC)nS:)P((GeeSuly how to beor T‘,M,;%,\ o CCMp\Pr Lonthon

List Implementations

1. Linked List

head\
c € s | &6 216 |2 & 5|6

—None

Array List

An array is allocated as continuous memory.

Three values are necessary for efficient array usage:

1) DC(‘VO — The Star ¥ Pas}km of my orley (mm.o/), 43}”/5)

) Size - fhe (oint B oF ems a 't (m"“m’y alkpsc)

3) (apacky —The max Size oF te IS

Array List \

IDERDDEN
1 b

data size capacity

In C++, vector is implemented as:

1) Data: Stored as a pointer to array start

2) Size: Stored as a pointer to the next available space

—_—

—

3) Capacity: Stored as a pointer past the end of the array

\

—~—~

List.h éqk'+, ‘TL

#pragma once =

class List {

public:
— 1 Y

25 | private: b <. ze
26 ata_;

1
2
3 | template <typename T> A B C
4
5

e S Poinke wae b # ae adls reofO)
30 apacity ; . .
—_ _) I(\'- * ?/
[- %/ |
i PH L & lemt bx o s#hat)

If | want to know the number of items in the array: s 7. - d-f

B o O would cetvin @

o)

List.h
#pragma once

1
2
3 | template <typename T> A B C D E F N
4 | class List { s
5 | public:
NV <€
25 | private: .
26 T *data ; Co’qwlf/
27
28 T *size ;
29
30 T *capacity ;
[* -—= %/
};

How do | know if I'm at capacity? ¥ <ize = = Capacty

Array List: []

Array List: insertFront(data)

C S 2 2 5

Array List: insertBack(data)

C S 2 2 5

Array List: insert(data, index) @

C S 2 2 5

Array List: addspace(data)

N O S P A C E

