
Department of Computer Science

Data Structures
Linked Lists

January 28, 2026 CS 225
Brad Solomon

Learning Objectives

Review fundamentals of linked lists

Implement insert, index, and remove operations

Discuss pointers vs references-to-pointers

List ADT
A list is an ordered collection of items

Items can be either heterogeneous or homogenous

The list can be of a fixed size or is resizable

A minimal set of operations (that can be used to create all others):
1. Insert

2. Delete

3. isEmpty

4. getData

5. Create an empty list

List Implementations
1. Linked List

2. Array List

template <class T>
class List {
 public:
 /* ... */
 private:
 class ListNode {
 T & data;
 ListNode * next;
 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;
};

List.h
1
2
3
4
5
…

28
29
30
31
32

33
34

C S 2 2 5
Ø

head_

Can we access x from y?

ListNode x ListNode y

Can we access y from x?

Join Code: 225

#pragma once

class List {
 public:
 /* ... */
 void insertAtFront(const T& t);

 private:
 class ListNode {
 T & data;
 ListNode * next;
 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;

 /* ... */

};

List.h
1
2
3
4
5
…

28
29
30
31
32
33
34
35
36
37
38
39
40
…
…
…

79
79

What is missing in this code?

#pragma once

template <typename T>
class List {
 public:
 /* ... */
 void insertAtFront(const T& t);

 private:
 class ListNode {
 T & data;
 ListNode * next;
 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;

 /* ... */

};

#include "List.hpp"

List.h
1
2
3
4
5
…

28
29
30
31
32
33
34
35
36
37
38
39
40
…
…
…

79
79

void List<T>::insertAtFront(const T& t)
{

}

List.hpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Linked List: insertAtFront(data)

C S 2 2 5
Ø

head_

#pragma once

template <typename T>
class List {
 public:
 /* ... */
 private:
 class ListNode {
 T & data;
 ListNode * next;
 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;

 /* ... */

};

#include "List.hpp"

List.h
1
2
3
4
5
…

28
29
30
31
32

33
34
35
36
37
38
39
…
…

79
79

template <typename T>
void List<T>::insertAtFront(const T& t)
{

 ListNode *tmp = new ListNode(t);

 tmp->next = head_;

 head_ = tmp;

}

List.hpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Linked List: insert(data, index)

C S 2 2 5
Ø

head_

Linked List: insert(data, index)

C S 2 2 5
Ø

head_

insert(d,3)

To insert a new ListNode at index 3, we need to modify which node?

A B C D

Join Code: 225

Linked List: insert(data, index)

C S 2 2 5
Ø

head_

insert(d,3)

1) Get access to node @ position index - 1

We could code up a solution to insert which uses some previous var

But lets be smarter!

Coding tip from last lecture: Consider the entire interface

Linked List: _index(index)

C S 2 2 5
Ø

head_

Lets write one function which is useful for insert / remove AND find

Linked List: _index(index)

What should the return type of _index() be?

(A) T & (B) ListNode

(C) ListNode * (D) ListNode *&

[template <class T>]

C S 2 2head_
Join Code: 225

Comparing pointer to reference-to-pointer

A B C D E
Ø

head_

ListNode * curr = _index(3);

ListNode *& curr = _index(3);

LinkedList *& _index(index)

C S 2 2 5
Ø

head_

// Iterative Solution:
template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index) {
 if (index == 0) { return head; }
 else {
 ListNode *curr = head;
 for (unsigned i = 0; i < index - 1; i++) {
 curr = curr->next;
 }
 return curr->next;
 }
}

List.hpp
1
2
3
4
5
6
7
8
9

10
11
12

List.hpp

template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index, ListNode *& root){

}

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index){
	 return _index(index, head_)
}

58
59
60
61

A brief tangent…

template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index){
	 return _index(index, head_)
}

List.hpp
58
59
60
61

template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index, ListNode *& root){

if (index == 0){ return root; }

if (root == nullptr){ return root; }

return _index(index - 1, root -> next);

}

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

A brief tangent…

Linked List: insert(data, index)

C S 2 2 5
Ø

head_

1) Get reference to previous node’s next
 ListNode *& curr = _index(index);

Linked List: insert(data, index)

C S 2 2 5
Ø

head_

1) Get reference to previous node’s next
 ListNode *& curr = _index(index);

2) Create new ListNode
 ListNode * tmp = new ListNode(data);

3) Update new ListNode’s next
 tmp->next = curr;

4) Modify the previous node to point to new ListNode
 curr = tmp;

template <typename T>
void List<T>::insert(const T & data,
unsigned index) {

 ListNode *& curr = _index(index);

 ListNode * tmp = new ListNode(data);

 tmp->next = curr;

 curr = tmp;
}

List.hpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

template <typename T>
void List<T>::insertAtFront(const T& t)
{
 ListNode *tmp = new ListNode(t);

 tmp->next = head_;

 head_ = tmp;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Lets compare…

List Random Access []
Given a list L, what operations can we do on L[]?

What return type should this function have?

List Random Access []

What return type should this function have?

(A) T & (B) ListNode

(C) ListNode * (D) ListNode *&

[template <class T>]

Join Code: 225

template <typename T>
T & List<T>::operator[](unsigned index) {

}

List.hpp
48
49
50
51
52
53
54
55
56
57
58

C S 2 2 5
Ø

head_

Linked List: remove(<parameters>)
What input parameters make sense for remove?

A B C D E
Ø

head_

Linked List: remove(ListNode *& n)

C S 2 2 5
Ø

head_

template <typename T>
T List<T>::remove(ListNode *& node) {

}

List.hpp
103
104
105
106
107
108
109
110
111
112

Linked List: remove(T & data)

C S 2 2 5
Ø

head_

Linked List: remove

C S 2 2 5
Ø

head_

Running time for remove(ListNode *&)

Running time for remove(T & data)

List Implementations
1. Linked List

2. Array List

C S 2 2 5
None

C S 2 2 5

head

