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Learning Objectives

Review fundamentals of linked lists

Implement insert, index, and remove operations

Discuss pointers vs references-to-pointers



List ADT
A list is an ordered collection of items

Items can be either heterogeneous or homogenous

The list can be of a fixed size or is resizable

A minimal set of operations (that can be used to create all others):
1. Insert

2. Delete

3. isEmpty

4. getData

5. Create an empty list



List Implementations
1. Linked List

2. Array List



template <class T> 
class List { 
  public: 
    /* ... */ 
  private: 
    class ListNode { 
      T & data; 
      ListNode * next; 
      ListNode(T & data) : 
       data(data), next(NULL) { } 
    }; 

    ListNode *head_; 
};
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Can we access x from y? 

ListNode x ListNode y

Can we access y from x? 
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#pragma once 

class List { 
  public: 
    /* ... */ 
  void insertAtFront(const T& t); 

  private: 
    class ListNode { 
      T & data; 
      ListNode * next; 
      ListNode(T & data) : 
       data(data), next(NULL) { } 
    }; 

    ListNode *head_;  
 
    /* ... */ 
 
}; 
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What is missing in this code?



#pragma once 

template <typename T> 
class List { 
  public: 
    /* ... */ 
  void insertAtFront(const T& t); 

  private: 
    class ListNode { 
      T & data; 
      ListNode * next; 
      ListNode(T & data) : 
       data(data), next(NULL) { } 
    }; 

    ListNode *head_;  
 
    /* ... */ 
 
}; 

#include "List.hpp"
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void List<T>::insertAtFront(const T& t) 
{ 

 
}
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Linked List: insertAtFront(data)
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#pragma once 

template <typename T> 
class List { 
  public: 
    /* ... */ 
  private: 
    class ListNode { 
      T & data; 
      ListNode * next; 
      ListNode(T & data) : 
       data(data), next(NULL) { } 
    }; 

    ListNode *head_;  
 
    /* ... */ 
 
}; 

#include "List.hpp"
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template <typename T> 
void List<T>::insertAtFront(const T& t) 
{ 

  ListNode *tmp = new ListNode(t); 

  tmp->next = head_; 

  head_ = tmp; 
 
}
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Linked List: insert(data, index)
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Linked List: insert(data, index)
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insert(d,3)

To insert a new ListNode at index 3, we need to modify which node?

A B C D
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Linked List: insert(data, index)
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insert(d,3)

1) Get access to node @ position index - 1

We could code up a solution to insert which uses some previous var

But lets be smarter!

Coding tip from last lecture: Consider the entire interface



Linked List: _index(index)
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Lets write one function which is useful for insert / remove AND find



Linked List: _index(index)

What should the return type of _index() be?

(A) T & (B) ListNode

(C) ListNode * (D) ListNode *&

[ template <class T>]

C S 2 2head_
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Comparing pointer to reference-to-pointer
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head_

ListNode * curr = _index(3);

ListNode *& curr = _index(3);



LinkedList *& _index(index)
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// Iterative Solution: 
template <typename T> 
typename List<T>::ListNode *& List<T>::_index(unsigned index) { 
  if (index == 0) { return head; } 
  else { 
    ListNode *curr = head; 
    for (unsigned i = 0; i < index - 1; i++) { 
       curr = curr->next; 
    } 
    return curr->next; 
  } 
}
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List.hpp

template <typename T> 
typename List<T>::ListNode *& List<T>::_index(unsigned index, ListNode *& root){ 

 
}
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template <typename T> 
typename List<T>::ListNode *& List<T>::_index(unsigned index){ 
	 return _index(index, head_) 
}
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A brief tangent…



template <typename T> 
typename List<T>::ListNode *& List<T>::_index(unsigned index){ 
	 return _index(index, head_) 
}

List.hpp
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template <typename T> 
typename List<T>::ListNode *& List<T>::_index(unsigned index, ListNode *& root){ 

if (index == 0){ return root; } 

if (root == nullptr){ return root; } 

return _index(index - 1, root -> next); 

 
}
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Linked List: insert(data, index)
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1) Get reference to previous node’s next
  ListNode *& curr = _index(index);



Linked List: insert(data, index)
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1) Get reference to previous node’s next
  ListNode *& curr = _index(index);

2) Create new ListNode
  ListNode * tmp = new ListNode(data);

3) Update new ListNode’s next
  tmp->next = curr;

4) Modify the previous node to point to new ListNode
  curr = tmp;



template <typename T> 
void List<T>::insert(const T & data, 
unsigned index) { 

  ListNode *& curr = _index(index); 

  ListNode * tmp = new ListNode(data); 

  tmp->next = curr; 

  curr = tmp; 
}
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template <typename T> 
void List<T>::insertAtFront(const T& t) 
{ 
  ListNode *tmp = new ListNode(t); 

  tmp->next = head_; 

  head_ = tmp; 
 
}
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Lets compare…



List Random Access []
Given a list L, what operations can we do on L[]?

What return type should this function have?



List Random Access []

What return type should this function have?

(A) T & (B) ListNode

(C) ListNode * (D) ListNode *&

[ template <class T>]

Join Code: 225



template <typename T> 
T & List<T>::operator[](unsigned index) { 

}
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Linked List: remove(<parameters>)
What input parameters make sense for remove?
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Linked List: remove(ListNode *& n)
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template <typename T> 
T List<T>::remove(ListNode *& node) { 

}
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Linked List: remove(T & data)
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Linked List: remove
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Running time for remove(ListNode *&)

Running time for remove(T & data)



List Implementations
1. Linked List

2. Array List
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