Data Structures

Linked Lists

CS 225 January 28, 2026
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Review fundamentals of linked lists
Implement insert, index, and remove operations

Discuss pointers vs references-to-pointers

List ADT

A list is an ordered collection of items
Items can be either heterogeneous or homogenous
The list can be of a fixed size or is resizable

A minimal set of operations (that can be used to create all others):
1. Insert

2. Delete

3. IsEmpty

4. getData

5. Create an empty list

List Implementations
1. Linked List

2. Array List

template <class T> Can we access x from y?

1

2 | class List {
3 public:
4
5

List.h Join Code: 225 %EI

/* ... */

private:
. class ListNode {
28 T & data;
29 ListNode * next; 2
2 LictNode (T & data) : Can we access y from x:
31 data(data) , next (NULL) { }
32 };

33 ListNode *head ;

————>95

head_rc(’>s & 216 216 |s5|é€
ListNode x ListNode y

List.h

79

#pragma once

class List {
public:
/* ... */

void insertAtFront (const T& t);

private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data(data), next (NULL) { }

}i
ListNode *head ;

/* ... */

What is missing in this code?

List.h

List.hpp

#pragma once

template <typename T>
class List {
public:
[* ... */

void insertAtFront(const T& t);

private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data(data), next (NULL) { }

i g
ListNode *head;;
/* ... */

¥

#include "List.hpp"

OWCoOoOJdJonUldWN =

void List<T>::insertAtFront (const T& t)
{

Linked List: insertAtFront(data)

head r

C

'Y

S

'Y

">

2

'Y

’»

2

'Y

0

List.h

List.hpp

#pragma once

template <typename T>
class List {
public:
/* ... */
private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data (data) , next (NULL) { }

}i
ListNode *head ;
/* ... */

}i

#include "List.hpp"

WO dWN =

template <typename T>

void List<T>::insertAtFront (const T& t)

{

ListNode *tmp = new ListNode(t)

tmp->next = head ;

head = tmp;

Linked List: insert(data, index)

head r

C

'Y

S

'Y

">

2

'Y

’»

2

'Y

0

Linked List: insert(data, index) insert(d,3)

> ¢

head_o/-c(s (’»z (’bz 6§ | 5| &

A B C D

To insert a new ListNode at index 3, we need to modify which node?

Olgzln
5

Join Code: 225

Linked List: insert(data, index) insert(d,3)
head_o/-c(s (’»z (’bz 6§ | 5| &

> ¢

1) Get access to node @ positionindex - 1
We could code up a solution to insert which uses some previous var

But lets be smarter!

Coding tip from last lecture: Consider the entire interface

Linked List: _index(index)

0

">

head_Q/'c(s | & 2 (’»z 6§ | 5| &

Lets write one function which is useful for insert / remove AND find

Linked List: index(index) ?é'{f-’-lil

head c|l & s | & |2 & 26 Eﬁ
Join Code: 225

What should the return type of _index() be?

[template <class T>]
(AT & (B) ListNode

(C) ListNode * (D) ListNode *&

Comparing pointer to reference-to-pointer @

0

">

head_ € | A | € B | & cl6 olé€ lel&

ListNode * curr = _index(3);

ListNode *& curr = index(3);

LinkedList *& index(index)

head r

C

'Y

S

'Y

">

2

'Y

’»

0

List.hpp

// Iterative Solution:
template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index) ({
if (index == 0) { return head; }
else {
ListNode *curr = head;
for (unsigned i = 0; i < index - 1; i++) {
curr = curr->next;

OWCoOoOJdJonUldWDN =

}

10 return curr->next;

A brief tangent... List.hpp

58 | template <typename T>
59 | typename List<T>::ListNode *& List<T>:: index(unsigned index) {

60 return index(index, head)
61|}

template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index, ListNode *& root) {

A brief tangent... List.hpp

58 | template <typename T>
59 | typename List<T>::ListNode *& List<T>:: index(unsigned index) {

60 return index(index, head)
61|}

template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index, ListNode *& root) {

if (index == 0){ return root; }

if (root == nullptr){ return root; }

return _index(index - 1, root -> next);

Linked List: insert(data, index)

">

head € | c | € s | & , | 6 2] &

1) Get reference to previous node’s next

ListNode *& curr = index(index);

0

Linked List: insert(data, index) @
head € | c | € s | & |26 2|6 |s5|é&

1) Get reference to previous node’s next

ListNode *& curr = index(index);

2) Create new ListNode
ListNode * tmp = new ListNode (data) ;

3) Update new ListNode’s next
tmp->next = curr;

4) Modify the previous node to point to new ListNode

curr = tmp;

OWCoOoOJdJonUldWN =

Lets compare...

List.hpp

template <typename T>
void List<T>::insertAtFront (const T& t)

{
ListNode *tmp = new ListNode(t) ;
tmp->next = head ;

head = tmp;

WO dWN =

template <typename T>
void List<T>::insert(const T & data,
unsigned index) ({

ListNode *& curr = index(index) ;

ListNode * tmp = new ListNode (data) ;

tmp->next = curr;

curr = tmp;

List Random Access []

Given a list L, what operations canwedoon L[]?

What return type should this function have?

List Random Access | | ?éﬁfllil
% T3

What return type should this function have?
Join Code: 225

[template <class T>]
(AT & (B) ListNode

(C) ListNode * (D) ListNode *&

List.hpp

48
49
50
51
52
53
54
55
56
57
58

template <typename T>

T & List<T>::operator[] (unsigned index) ({

head_<"—___ C 1"_—_—>

————>Q§

Linked List: remove (<parameters>)

What input parameters make sense for remove?

’->¢

s > R o E—
head & | Al & B | & c|l & D | &

Linked List: remove(ListNode *& n)

head r

C

'Y

S

'Y

">

2

'Y

’»

2

'Y

—

0

List.hpp

103 | template <typename T>

104 | T List<T>::remove (ListNode *& node) {
105
106
107
108
109
110
111
112 |}

Linked List: remove (T & data)

head r

C

'Y

S

'Y

">

2

'Y

’»

0

Linked List: remove

head € | c | € s

'Y

'Y

Running time for remove(ListNode *&)

Running time for remove (T & data)

List Implementations

1. Linked List

head\
c € s | &6 216 |2 & 5|6

—None

2. Array List

