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Learning Objectives

Review fundamentals of Iinkﬂstp

~
Implement insert, index, and remove operations

Discuss pointers vs references-to-pointers
/\/\/\/\/\/




List ADT

A list is an ordered Collection of items
Z_ L

Items can be either heterogeneous or homogenous

The list can be of a fixed size or is resizable
A minimal set of operations (that can be used to create all others):
1.Insert &
2. Delete &
3. IsEmpty
4. getData

5. Create an empty list




List Implementations (Rm«/>

1. Linked List
Do [
2. Array List




List.h Join Code: 225 IEI d[u]

1| template <class T> Can we access x from y?

2 | class List { -

3 public: c

4 /* ... */ k) I()/(, ,U
5 private: ¢
class ListNode { \494
28 [ T & data;
29 ListNode * next; ?
29 LiotNode (T Toiera) - Can W?{access y from x e
31 data(data) , next (NULL) { } (Wr >afxt =
32 }; (7 z"§ ) E
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33 ListNode *head ;
34| }; Jaf4
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List.h

79

#pragma once
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class List {

public:
/* ... */
void insertAtFront(const;Ef t);
private:
class ListNode {
T & data;

ListNode * next;

ListNode (T & data)
data(data), next (NULL) { }

}; I
ListNode *head;;

/* ... */
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What is missing in this code?
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List.h

List.hpp

#pragma once

template <typename T>
class List {
public:
[* ... */

void insertAtFront(const T& t);

private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data(data), next (NULL) { }

i g
ListNode *head;;
/* ... */

¥

#include "List.hpp"
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void List<T>::insertAtFront (const T& t)
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List.h

List.hpp

#fpragma once

template <typename T>
class List {
public:
/%
private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data (data) , next (NULL) { }

};

*/

ListNode *head ;
/* */

};

#include "List.hpp"
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template <typename T>
void List<T>::insertAtFront (const T& t)

{ Jl)

ListNode *tmp = new ListNode(t) ;
p = new Lis t); &

tmp->next = head ; QQ/ACD({)
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Linked List: insert(data, index) \f‘éerQ‘,é)
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Linked List: insert(dathert(d,3)
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Linked List: insert(data, index) insert(d,3)
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1) Get access to node @ position index - 1

We could code up a solution to insert which uses som@us@
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But lets be smarter! T\)

Coding tip from last lecture: Consider the entire interface
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Linked List: _index(index) \L
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Lets write one function which is useful for insert / remove AND find
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Linked List: index(index) ?é'{f-’-lil
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What should the return type of _index() be?

[ template <class T>]

(A)T & (B) ListNode
o o
‘O/c §/6
(C) ListNode * (D) ListNode *&
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Comparing pointer to reference-to-pointer @
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Comparing pointer to reference-to-pointer

0
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ListNode * curr = _index(3);

We can access curr->data and curr->next but not previous.next

S
— Cefome ke ., '&""‘
£ ¥ oo wollk y D
ListNode *@ curr = index(3);
We can access curr.data, curr.next and... 2+ & 7.tbulcl

curr == previous.next
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ListNode * curr = _index(3); (Ox) \a it k=1

curr = new ListNode (x); & OxZ r=S
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List.hpp

1| // Iterative Solution:
2| template <typename T>
3| typename List<T>::ListNode *& List<T>::
4 if (index == 0) { return head; }
5 else {
6 ListNode *curr = head;
7 for (unsigned i = 0; i < index - 1;
8 curr = curr->next; —
9 }
10 return (curr->next; >
11 }
12|}

_index (unsigned index) ({
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A brief tangent... List.hpp

58 | template <typename T>
59| typename List<T>::ListNode *& List<T>:: index(unsigned index) {

60 return index(index, head )
61|}

template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index, ListNode *& root) {
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A brief tangent... List.hpp

58 | template <typename T>
59 | typename List<T>::ListNode *& List<T>:: index(unsigned index) {

60 return index(index, head )
61|}

template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index, ListNode *& root) {

if (index == 0){ return root; }

if (root == nullptr){ return root; }

return _index(index - 1, root -> next);




Linked List: insert(data, index)
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1) Get reference to previous node’s next
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Linked List: insert(data, index) @
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1) Get reference to previous node’s next X

ListNode *& curr = index(index);

2) Create new ListNode

X
ListNode * tmp = new ListNode (data) ;

3) Update new ListNode’s next
tmp->next = curr; @é
4) Modify the previous node to point to new ListNode

curr = tmp;
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Lets compare...

List.hpp

template <typename T>
void List<T>::insertAtFront (const T& t)

( —

ListNode *tmp = new ListNode(t) ;

tmp->next

head tmp;

H Z/H
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template <typename T>

void List<T>::§g§g;Liconst T & data,
unsigned index) {

ListNode *& curr = index(index) ;

ListNode * tmp = new ListNode (data) ;

tmp->next =<EEE;2>

tmp;

} curr
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What is the Big O of insert? List.hpp

1
2 | template <typename T>
3 |void List<T>::insert(const T & data,
4 |unsigned index) {
5
6
7
8 ListNode *& curr = index(index) ;
9
10
11
12 ListNode * tmp = new ListNode (data) ;
13
14
15
16 tmp->next = curr;
17
18 [w] e [w]
19 e Ly
20 curr = tmp; -
21 |} i
22 [w]
Join Code: 225




List Random Access [ ]

Given a list L, what operations canwedoon L[ ]?

What return type should this function have?




List Random Access | | ?éﬁfllil
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What return type should this function have?
Join Code: 225

[ template <class T>]
(AT & (B) ListNode

(C) ListNode * (D) ListNode *&




List.hpp
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template <typename T>

T & List<T>::operator[] (unsigned index) ({
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List.hpp
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template <typename T>

T & List<T>::operator[] (unsigned index) ({

ListNode *&new_node =

return new_node—>data;

_index (index) ;

w454
s

Join Code: 225

head ‘r————- C ‘r—

What is the Big O of random access?
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Linked List: remove (<parameters>)

What input parameters make sense for remove?
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Linked List: remove(ListNode *& n)

head r
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List.hpp

103 | template <typename T>

104 | T List<T>::remove (ListNode *& node) {
105
106
107
108
109
110
111
112 |}




Linked List: remove (T & data)

head r
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Linked List: remove

head € | c | € s
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Running time for remove(ListNode *&)

Running time for remove (T & data)




List Implementations

1. Linked List

head\
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—None

2. Array List




