Data Structures

Linked Lists
CS 225 January 28, 2026

Brad Solomon
D7 B 8o
UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Announcements

L?l% Y Qu have gust :.SQ'\I\«QB, S.gq up to toke €K N0

¢
T4 yao (ant, emal (5305 adma

Learning Objectives

Review fundamentals of Iinkﬂstp

~
Implement insert, index, and remove operations

Discuss pointers vs references-to-pointers
/\/\/\/\/\/

List ADT

A list is an ordered Collection of items
Z_ L

Items can be either heterogeneous or homogenous

The list can be of a fixed size or is resizable
A minimal set of operations (that can be used to create all others):
1.Insert &
2. Delete &
3. IsEmpty
4. getData

5. Create an empty list

List Implementations (Rm«/>

1. Linked List
Do [
2. Array List

List.h Join Code: 225 IEI d[u]

1| template <class T> Can we access x from y?

2 | class List { -

3 public: c

4 /* ... */ k) I()/(, ,U
5 private: ¢
class ListNode { \494
28 [T & data;
29 ListNode * next; ?
29 LiotNode (T Toiera) - Can W?{access y from x e
31 data(data) , next (NULL) { } (Wr >afxt =
32 }; (7 z"§) E

—

33 ListNode *head ;
34| }; Jaf4

L.‘é\J\/db(*Qwr = </
|2

> P \//’ B
head & | c | 61 |s | & |2 & |l2/6T |s5|é& ?

ListNode x LiétNode y

List.h

79

#pragma once

Lemdate CAYprneye T)

class List {

public:
/* ... */
void insertAtFront(const;Ef t);
private:
class ListNode {
T & data;

ListNode * next;

ListNode (T & data)
data(data), next (NULL) { }

}; I
ListNode *head;;

/* ... */

S

What is missing in this code?
L77~(/V|~{)’4|"(c)

List.h

List.hpp

#pragma once

template <typename T>
class List {
public:
[* ... */

void insertAtFront(const T& t);

private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data(data), next (NULL) { }

i g
ListNode *head;;
/* ... */

¥

#include "List.hpp"

OWCoOoOJdJonUldWN =

T\”m{)\éfhl Y n J’IW

void List<T>::insertAtFront (const T& t)
{

i _"’M»\qlp) (e A uged WSS
Ca“f\

S owl
as

Feasste il SPL'(X\:(-\7‘??5
RTL

. —)(g | Lfl\,ldvl
Linked List: insertAtFront(data) D -

0

g

head € c|l & s | & 2 (’-»z & | s | &

g | X T 54 -y

) ke o wo Ustlale TP

""l"cnL lnafPf»s ‘£ (\),(3)/ % Qdata = X
< et = pullpte
ha\}é%ﬁ \’739 é%ﬁ 3‘) Set Tmpv next =)'\vch
S

1‘7@77 3» Set heed _ 4o be Tmp

/

List.h

List.hpp

#fpragma once

template <typename T>
class List {
public:
/%
private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data (data) , next (NULL) { }

};

*/

ListNode *head ;
/* */

};

#include "List.hpp"

OWCoOoOJdJonUldWN =

template <typename T>
void List<T>::insertAtFront (const T& t)

{ Jl)

ListNode *tmp = new ListNode(t) ;
p = new Lis t); &

tmp->next = head ; QQ/ACD({)

p; & OU1)

Vit My (= new Lstenl
my(. kRt ()]

head =

o)

(S
——

=

Linked List: insert(data, index) \f‘éerQ‘,é)
O |
head_r C (S (’b

Q(\P\GUM\X
P4 X ACES

\(\(0* U\;\/\&\¥

\w ¢ \p'v\\ XO‘\

Linked List: insert(dathert(d,3)
@ | [- P -

BN SN - SN/,
head & | c| & s | & 2 é’ 2 'Y 5 | &
D
A B C D
%% IS A <
To insert a new ListNode at index 3, modify which node?

—

O To add new tem of ladex 3, W ()¢}

B> et

Olgzln
5

Join Code: 225

Linked List: insert(data, index) insert(d,3)
head_Q/'c(s (’»z (’»z 6§ | 5| &

0

1) Get access to node @ position index - 1

We could code up a solution to insert which uses som@us@
<~

|
But lets be smarter! T\)

Coding tip from last lecture: Consider the entire interface
D FTert) O Rapan() ¥ Fad ()

Linked List: _index(index) \L

> e e >
head_g/'c(s | & z/\iﬂz 'Y 5 | & P

Lets write one function which is useful for insert / remove AND find

\> _U' /"bs)')'\O\le A(l(ess 1 w“:;cvs ,\prg /\(*\/}

Q&ox *D
2\) \/v\"{’n T Cal | 10\“5 (%> | ot ‘\&t@ ;

Linked List: index(index) ?é'{f-’-lil

head c|l & s | & |2 & 26 Eﬁ
Join Code: 225

What should the return type of _index() be?

[template <class T>]

(A)T & (B) ListNode
o o
‘O/c §/6
(C) ListNode * (D) ListNode *&

Q§6/6 QG/O,

Comparing pointer to reference-to-pointer @

?(eV (ir
S ‘e

L
e pmm— ’—'>¢
head & | A | € 8| & C D | & E| &
Cde ¥ prey oext)
ox]
QOxl -
ListNode * curr = _index(3);
& (e o Jabe
O Wic » next
O«
ListNode *& curr = index(3);
)L hove peiater do curr
- G 3
S (Vir D M > (uie > ned Gl o Lg\me)

B/c X an (Hfeeve T G Moc\xy < va\wf

Comparing pointer to reference-to-pointer

0

head_ € | A | € B | & c(’—-»D & |t &
\/\'l/\y (Gn >T wQ cferm‘efu\r(wir Yo /m}(g LL%rs7,

ListNode * curr = _index(3);

We can access curr->data and curr->next but not previous.next

S
— Cefome ke ., '&""‘
£ ¥ oo wollk y D
ListNode *@ curr = index(3);
We can access curr.data, curr.next and... 2+ & 7.tbulcl

curr == previous.next

(:C”11pﬁar“1€JIDC)hntH't()'T?ﬁerEHWCKE'tCV1DCﬂrTUer
C ke R prev daet

head_ € | A | € B (’-’zw(’»n 6 |« (’—»¢
What dox (5 to B me? N\ Aty (¥)

ListNode * curr = _index(3); (Ox) \a it k=1

curr = new ListNode (x); & OxZ r=S

This does ad mdy py it
Ni' “2AC 1 (QX)
ListNode *&/’curr — _index(3) . «“— retu -"7 v 74Cx l

curr = new ListNode (x) ;

s des oy, o M2tz OL

LinkedList *& _index(index) . | 4y

O \ 2 2

nesd_ & | c| & | s| & |2 (j)z « s &
i :fvr/ \9 —> /\\ C\ l
Uit Nobe * e = head _ e 3)

-FC)/ (Uné‘ﬁppé N - a; . < :(&QX‘—' ; L"*}é Cf'F Ao 'Pd'-l\k/

Cfc = Cupr = Mx*f/'

S—

3

(Cetuln (ug ¢ Snext
} W

0

List.hpp

1| // Iterative Solution:
2| template <typename T>
3| typename List<T>::ListNode *& List<T>::
4 if (index == 0) { return head; }
5 else {
6 ListNode *curr = head;
7 for (unsigned i = 0; i < index - 1;
8 curr = curr->next; —
9 }
10 return (curr->next; >
11 }
12|}

_index (unsigned index) ({

AL /lqayéc. ed b
Q}st ‘—Lf/}l"r
S Wt 6\04‘\

nullpi S nest

Ty

mea (PP (qtvin (W eyt
€= 0oL e ()
€: NCw \-fS\A)()Bt< >I,

L.

(U[(,{\VX'L ho\s \/a\\l{ ﬂL\\P""

| \
©x. st AT (/%N

byt does

A brief tangent... List.hpp

58 | template <typename T>
59| typename List<T>::ListNode *& List<T>:: index(unsigned index) {

60 return index(index, head)
61|}

template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index, ListNode *& root) {

\
T/\/ O’\ Own .lé ‘A\‘)P"""’\Jr (l"lwg'\,(‘\;

A brief tangent... List.hpp

58 | template <typename T>
59 | typename List<T>::ListNode *& List<T>:: index(unsigned index) {

60 return index(index, head)
61|}

template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index, ListNode *& root) {

if (index == 0){ return root; }

if (root == nullptr){ return root; }

return _index(index - 1, root -> next);

Linked List: insert(data, index)

head r C

'Y

1) Get reference to previous node’s next

S

'Y

">

2

/€

’»

2

"

f\

ListNode *& curr = 1index(index); !

'Y

0

Linked List: insert(data, index) @

-}ﬂ\#n“x}‘

> pm— pmm— ’—"¢
head € | c | € s | & 2 (2’ j 2 | & 5 | &
| | hV
1) Get reference to previous node’s next X

ListNode *& curr = index(index);

2) Create new ListNode

X
ListNode * tmp = new ListNode (data) ;

3) Update new ListNode’s next
tmp->next = curr; @é
4) Modify the previous node to point to new ListNode

curr = tmp;

WO dWN =

Lets compare...

List.hpp

template <typename T>
void List<T>::insertAtFront (const T& t)

(—

ListNode *tmp = new ListNode(t) ;

tmp->next

head tmp;

H Z/H
h(»kz/ CwVWOOJOUdWN K

template <typename T>

void List<T>::§g§g;Liconst T & data,
unsigned index) {

ListNode *& curr = index(index) ;

ListNode * tmp = new ListNode (data) ;

tmp->next =<EEE;2>

tmp;

} curr
(f s o Po'y\‘}tr

What is the Big O of insert? List.hpp

1
2 | template <typename T>
3 |void List<T>::insert(const T & data,
4 |unsigned index) {
5
6
7
8 ListNode *& curr = index(index) ;
9
10
11
12 ListNode * tmp = new ListNode (data) ;
13
14
15
16 tmp->next = curr;
17
18 [w] e [w]
19 e Ly
20 curr = tmp; -
21 |} i
22 [w]
Join Code: 225

List Random Access []

Given a list L, what operations canwedoon L[]?

What return type should this function have?

List Random Access | | ?éﬁfllil
% T3

What return type should this function have?
Join Code: 225

[template <class T>]
(AT & (B) ListNode

(C) ListNode * (D) ListNode *&

List.hpp

48
49
50
51
52
53
54
55
56
57
58

template <typename T>

T & List<T>::operator[] (unsigned index) ({

head_<"—___ C 1"_—_—>

————>Q§

List.hpp

48
49
50
51
52
53
54
55
56
57
58

template <typename T>

T & List<T>::operator[] (unsigned index) ({

ListNode *&new_node =

return new_node—>data;

_index (index) ;

w454
s

Join Code: 225

head ‘r————- C ‘r—

What is the Big O of random access?

————>96

Linked List: remove (<parameters>)

What input parameters make sense for remove?

’->¢

s > R o E—
head & | Al & B | & c|l & D | &

Linked List: remove(ListNode *& n)

head r

C

'Y

S

'Y

">

2

'Y

’»

2

'Y

—

0

List.hpp

103 | template <typename T>

104 | T List<T>::remove (ListNode *& node) {
105
106
107
108
109
110
111
112 |}

Linked List: remove (T & data)

head r

C

'Y

S

'Y

">

2

'Y

’»

0

Linked List: remove

head € | c | € s

'Y

'Y

Running time for remove(ListNode *&)

Running time for remove (T & data)

List Implementations

1. Linked List

head\
c € s | &6 216 |2 & 5|6

—None

2. Array List

