Data Structures

Lists and List ADT

CS 225 January 26, 2026
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Enrolling in CS 199-225

James Scholar Enroliment:
1. Register for CS 225 section AH (CRN 70578)
2. Fill out the appropriate Honors Credit Learning Agreement

Check your individual college for James Scholar deadlines

Standard Enroliment:
1. Register for CS 199-225 (CRN 61879)

This is a pass-fail grade and a 0-credit course

Office Hour Etiquette

Schedule and link to queue on the website

Pay attention to the rules!

1. Be in Siebel Basement

2. Tag questions

3. Ask one specific guestion

4. Include a specific location

5. Include both your name and Discord ID

https://courses.grainger.illinois.edu/cs225/info/office-hours/

MP Stickers Released

An introduction to assignments in CS 225

A focused look at memory management / Rule of Three

Practice with Image processing / code testing

No extra credit / early submission for this MP!

Be sure to set up your lllinois CS 225 Git repo!

General MP Tips

Start by reading the web page!

Take a look at the doxygen for interface requirements
The implementation is decided by you!

Most autograder tests are provided for you locally

MP_Stickers Highlights
Part 1: test_invert()

Your first example of a templated function!

1| template <class T>

2 | bool test invert() {

3 // Your code here

4 // (As this is the only

5 | templated function, we aren't
. |using a .hpp file in this

28 | instance)

29 return false;

30|}

MP_Stickers Highlights
Part 2: StickerSheet

Big Picture: Memory Management! (Who owns what?)
+ render() Read the docs!

Image StickerSheet::render () const

Renders the whole StickerSheet on one Image and returns that Image.
The base picture is drawn first and then each sticker is drawn in order starting with layer zero (0), then layer one (1), and so on.

If a pixel's alpha channel in a sticker is zero (0), no pixel is drawn for that sticker at that pixel. If the alpha channel is non-zero, a
pixel is drawn. (Alpha blending is awesome, but not required.)

The returned image always includes the full contents of the picture and all stickers. It should expand in each corresponding
direction if stickers go beyond the edge of the picture.

Returns
An Image object representing the drawn scene

Exam 0 (1/26 — 1/29) @

An introduction to CBTF exam environment / expectations
Quiz on foundational knowledge from all pre-reqgs
Practice questions can be found on PL

Topics covered can be found on website

Registration open now

https://courses.engr.illinois.edu/cs225/sp2026/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

Define the functions and operations of the List ADT
Discuss list implementation strategies
Explore how to code and use a linked list

Practice fundamentals of C++ in the context of lists

Last time: Memory management

Local memory on the stack is managed by the computer
Heap memory allocated by new and freed by delete
Pass by value makes a copy of the object

Pass by pointer can be dereferenced to modify an object

Pass by reference modifies the object directly

Memory Management - Ownership
Copy Original

HOBRIT HOBRIT

Pass by Value:
A local copy of the original
Ex: addBook (Book book)

Pass by Pointer to Value: HOBBIT
An address on the heap Y
Ex: addBook (Book* book)

Pass by Reference:
Local varY X

is X

An alias to an existing variable
Ex: addBook (Book& book)

Templates

A way to write generic code whose type is determined
during completion

Templates

A way to write generic code whose type is determined
during compilation

1. Templates are a recipe for code using generic types

Templates

A way to write generic code whose type is determined
during compilation

1. Templates are a recipe for code using generic types

2. The compiler uses templates to generate C++ code when needed

T sum(T a, T b){

}

templatel.hpp

template <typename T>

T max(T a, T b) {
T result;
result = (a > b) ? a : b;
return result;

}

SNSoobkd WN R

Templates are very useful!

What is your favorite data structure? g_%ug
2

A) Lists B) Trees

Join Code: 225

C) Graphs D) Hash Tables

(W
a \\\£; 0 Apple
b d 1 @
O W) ©

2 Pear

Your favorite data structure: Trees

Your favorite data structu re:iFFeeel’sz‘s

23 | 42 | 80

3| 8 25 | 31 \{43 55 90 6 e

®OOO®

4 5 6 15 9 7 | 20|16 | 25 | 14 | 12 | 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Your favorite data structure: Graphs

>

S

vaY
<

T
=

\l‘g
)

OIS
3

) AVav
K N N
KO S
RSN RS At
A

A AL
gég;}#{vﬂh

*‘Avﬂ»(g‘: Ny s

R iy
AR
@"’gm

LR

S
VA v e
SO ,&;M
1 %)
2af . il

2

o)

Your favorite data structu re:-G-Fa-phel'Sl‘s

Your favorite data structure: Hash Tables
H={h, hy, ..., h)}

Greg
0 7/ A
12 “ 0
2 | @+ | Brett Betty Bob 1
3 (@ A- B B+ 0)
4 .-I ._I %, 1
> ;\ Ali Alice Anna 0
612 B+ | A+ | A- 0
7 % 1
3 N : 0
93 Lily Laura Sue 0
10l2 B+ A ; 0

So 100% of people are excited about lists!

A) Lists B) Trees

C) Graphs D) Hash Tables
a ®& 0 Apple
/b _d 1 @

@ bt @ 2 Pear

Note: Not every tree / graph / hash is actually a list :)

Abstract Data Types

A way of describing a data type as a combination of:
Data being stored by the data type
Operations that can be performed on the data type

The actual implementation details of the ADT aren’t relevant!

List ADT (What do we want our list to do?)

List ADT @

A list is an ordered collection of items
Items can be either heterogeneous or homogenous
The list can be of a fixed size or is resizable

A minimal set of operations (that can be used to create all others):
1. Insert

2. Delete

3. IsEmpty

4. getData

5. Create an empty list

List Implementations
1.

Linked List

C

'Y

0

List.h

28 | class ListNode {

29 T & data;

30 ListNode * next;

31 ListNode (T & data) : data(data), next (NULL) { }
32| };

Why is data stored as a reference?

Why is next a pointer?

List.h

79

#pragma once

class List {
public:
/* ... */

void insertAtFront (const T& t);

private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data(data), next (NULL) { }

}i
ListNode *head ;

/* ... */

How do | access list given head ?

head _

'Y

>

'Y

’>

List.h

79

#pragma once

class List {
public:
/* ... */

void insertAtFront (const T& t);

private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data(data), next (NULL) { }

}i
ListNode *head ;

/* ... */

What is missing in this code?

List.h

List.hpp

#pragma once

template <typename T>
class List {
public:
[* ... */

void insertAtFront(const T& t);

private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data(data), next (NULL) { }

i g
ListNode *head;;
/* ... */

¥

#include "List.hpp"

OWCoOoOJdJonUldWN =

void List<T>::insertAtFront (const T& t)
{

Linked List: insertAtFront(data)

head r

C

'Y

S

'Y

">

2

'Y

’»

2

'Y

0

List.h

List.hpp

#pragma once

template <typename T>
class List {
public:
/* ... */
private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data (data) , next (NULL) { }

}i
ListNode *head ;
/* ... */

}i

#include "List.hpp"

WO dWN =

template <typename T>

void List<T>::insertAtFront (const T& t)

{

ListNode *tmp = new ListNode (data) ;

tmp->next = head ;

head = tmp;

Linked List: insert(data, index)

head r

C

'Y

S

'Y

">

2

'Y

’»

2

'Y

0

Linked List: insert(data, index) insert(d,3)

> ¢

head_o/-c(s (’»z (’bz 6§ | 5| &

A B C D

To insert a new ListNode at index 3, we need to modify which node?

Olgzln
5

Join Code: 225

Linked List: _index(index)

head r

C

'Y

S

'Y

">

2

'Y

0

Linked List: index(index) ?é'{f-’-lil

head c|l & s | & |2 & 26 Eﬁ
Join Code: 225

What should the return type of _index() be?

[template <class T>]
(AT & (B) ListNode

(C) ListNode * (D) ListNode *&

List.hpp

58 | template <typename T>
59| typename List<T>::ListNode *& List<T>:: index(unsigned index) {

60 return index(index, head)
61|}

template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index, ListNode *& root) {

List.hpp

58 | template <typename T>
59 | typename List<T>::ListNode *& List<T>:: index(unsigned index) {

60 return index(index, head)
61|}

template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index, ListNode *& root) {

if (index == | | node == nullptr) {

return node;

}

return index(index - 1, root -> next);

List.hpp

// Iterative Solution:
template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index) ({
if (index == 0) { return head; }
else {
ListNode *curr = head;
for (unsigned i = 0; i < index - 1; i++) {
curr = curr->next;

OWCoOoOJdJonUldWDN =

}

10 return curr->next;

11 }
12|}

Which solution is better (iterative or recursive)?

Linked List: insert(data, index) @

">

head € | c | € s | & |6 2|6 |s|é&

1) Get reference to previous node’s next
ListNode *& curr = index(index);

2) Create new ListNode

ListNode * tmp = new ListNode (data) ;
3) Update new ListNode’s next

tmp->next = curr;

4) Modify the previous node to point to new ListNode

curr = tmp;

WO dWN =

List.hpp

template <typename T>
void List<T>::insertAtFront (const T& t)

{
ListNode *tmp = new ListNode(t) ;
tmp->next = head ;

head = tmp;

WO dWN =

template <typename T>
void List<T>::insert(const T & data,
unsigned index) ({

ListNode *& curr = index(index) ;

ListNode * tmp = new ListNode (data) ;

tmp->next = curr;

curr = tmp;

Next Time: List Random Access []

Given a list L, what operations canwedoon L[]?

What return type should this function have?

