Data Structures

Lists and List ADT

CS 225 January 26, 2026
Brad Solomon

)
UNIVERSITY OF

(i
ILLINOIS ®

URBANA-CHAMPAIGN

Department of Computer Science

Enrolling in CS 199-225 Zoem gl 5 On
D¢ (o0

James Scholar Enroliment:
1. Register for CS 225 section AH (CRN 70578)
2. Fill out the appropriate Honors Credit Learning Agreement

Check your individual college for James Scholar deadlines

Standard Enroliment:
1. Register for CS 199-225 (CRN 61879)

This is a pass-fail grade and a 0-credit course

Office Hour Etiquette

Schedule and link to queue on the website

Pay attention to the rules!

. . Q(\.'J'Q
1.Be in Siebel Basement ©

2. Tag questions el

3. Ask one specific guestion

4. Include a specific location (Zoaum ‘Iﬁk)

—

5. Include both your name and Discord ID
NN —

https://courses.grainger.illinois.edu/cs225/info/office-hours/

MP Stickers Released

An introduction to assignments in CS 225

A focused look at memory management / Rule of Three
e T ——
Practice with Image processing / code testing

No extra credit / early submission for this MP!

Ty

Be sure to set up your lllinois CS 225 Gitrepo! ./~

General MP Tips LSUA vl

-
Start by reading the web page! -

Take a look at the doxygen for interface requirements

—= 9J
The implementation is decided by you!

Most autograder tests are provided for you locally

MP_Stickers Highlights 4 LA PRI P

Part 1: test_invert() (— /

———

Your first example of a templated function!
template <class T> —‘«(53‘ _ \/\v (J_/-L (_“- 1 - jmﬂ%?

2 bool test 1n
Z // Your code here S TI‘VL /@a ¢ o
5

// (As this is the only
templated function, we aren't
. |using a .hpp file in this

28 | instance) j;
29 return false; CT)— - WM}C?
30|}

T wadeoh

MP_Stickers Highlights
Part 2: StickerSheet

Big Picture: Memory Management! (Who owns what?)
+ render() ‘Read the docs!

Image StickerSheet::render () const

Renders the whole StickerSheet on one Image and returns that Image.
The base picture is drawn first and then each sticker is drawn in order starting with layer zero (0), then layer one (1), and so on.

If a pixel's alpha channel in a sticker is zero (0), no pixel is drawn for that sticker at that pixel. If the alpha channel is non-zero, a
pixel is drawn. (Alpha blending is awesome, but not required.)

The returned image always includes the full contents of the picture and all stickers. It should expand in each corresponding
direction if stickers go beyond the edge of the picture.

Returns
An Image object representing the drawn scene

Exam 0 (1/26 — 1/29) ()

An introduction to CBTF exam environment / expectations
Quiz on foundational knowledge from all pre-reqgs
Practice questions can be found on PL

Topics covered can be found on website

Registration open now

https://courses.engr.illinois.edu/cs225/sp2026/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives o yes e

Define the functions and operations of the List ADT

Discuss list imwmn strategiesi\j

Explore how to code and use a linked list ‘Q

Practice fundamentals of C++ in the context of lists

—_

Last time: Memory management

Local memory on the stack is managed by the computer

—~
Heap memory allocated by new and freed by delete

Pass by/value makes a copy of the object

can be dereferenced to modify an object

e modifies the object directly

Memory Management - Ownership

Pass by Value:
A local copy of the original
Ex: addBook (Book book)

Pass by Pointer to Value:
An address on the heap
Ex: addBook (Book* book)

Pass by Reference: \
An alias to an existing variable
Ex: addBook (Book& book)

céa\

96\(

X

Copy

HOBRIT

is X

L

Original

HOBRIT

HOBRIT

Templates

A way to write generic code whose type is determined
during compilation

T $u,v\ (T 0‘, T \)) {

(‘QJTWA 0\+l>;

Templates

A way to write generic code whose type is determined
during compilation

1. Templates are a recipe for code using generic types

Templates

A way to write generic code whose type is determined
during compilation

1. Templates are a recipe for code using generic types

2. The compiler uses templates to generate C++ code when needed

/V|a',,\' CPP Oatqe ate |
(l _ _— > A Sum| Tab o Wt b)

T sum(T a, T b) { Sum (_l_/é)

}Ac\-

i 3 Sk X [oat) (\, é) > -”06,1- SVM(-F'M" a “"“7

=S

- ____ templatel.hpp @
Q‘/P‘W"v‘(T/ ""YPQ Nawne QU7

femplate <typename T%j)

T result;
result = (a > b) ? a : b;
return result;

}

N\

SNSoobkd WN R

T % ne¥r 5?6(\.“(, user e (o (Q/ m\/TYPP)

Templates are very useful!
\/'9(\’0/ CH’\\7

B IERE

7
et C_Gldﬁ

R,

Ve ctor cster)

I

n

\‘f\

\\%

What is your favorite data structure? g_%ug
2

A) Lists B) Trees

3¢

Join Code: 225

C) Graphs D 4 D) Hash Tables |/

(W
a \\\£; 0 Apple
b d 1 @
O W) ©

2 Pear

Your favorite data structure: Trees

Your favorite data structure:

23

42

80

31

43

55

90

5F|=ee5(’~“l‘s

(=1 O
® /@ @ @

15

9

7

o wls[ulula] ||

5
T
<

6

7 9 10 11 12 13 14 15

\ef+ T
9/? 2+ (.Jllﬂ\,

Your favorite data structure: Graphs

>

S

vaY
<

T
=

\l‘g
)

OIS
3

) AVav
K N N
KO S
RSN RS At
A

A AL
gég;}#{vﬂh

*‘Avﬂ»(g‘: Ny s

R iy
AR
@"’gm

LR

S
VA v e
SO ,&;M
1 %)
2af . il

2

o)

Your favorite data structure:-Graphs ’Sl‘s

(W)
@/bxﬁ |

u u '} a
Y} v w b
w u w C
z w z d

Your favorite data structure: Hash Tables 3 oow

\ Liots
e o > H={h,hy, ..., hkﬂ

A 1
° 0
1o %
2 | @+ | Brett Betty Bob 1
3|2 A- B B+ 0
4 Q_’.I-) ._I %) 1
> ;\ Ali Alice Anna 0
612 B+ | A+ | A- 0
7 0 1
8 N : 0
9o Lily Laura Sue 0
10(2 B+ A B 0

%,
—

So 100% of people are excited about lists!

A) Lists B) Trees

C) Graphs D) Hash Tables
3 @ c O Apple
/b\m d 1 o

@ bt @ 2 Pear

Note: Not every tree / graph / hash is actually a list :)

S

Abstract Data Types L teSfate

A way of describing a data type as a combination of:

Data being stored by the data type

L

Operations that can be performed on the data type

[

The actual implementation details of the ADT aren’t relevant!

[—

B

List ADT (What do we want our list to do?)

Stare Ln Bimalion (A G order)
o wsert [Pk bog R
S\N\ﬁk(’? (tmove | TOP
G Pess Daba [Frad

. ¢ 1N ;18] (an have Sark 16 b
LISt ADT ‘\L 5V i\d/ = (o olse love s b0 @

L L o C31,3)
Alist is an ordered collection of items g (¥'xe) Jos
Aok s a7 —> 5's at fsifon O €r @l
Items can be either b/ett_er/imeneous or homogenous 4
0 po 6 Yal Sam *VPQC
The list can be of a fixed size or is resizable Mol ¢
* COmm OGN
A minimal set of operations (that can be used to create all others): —7
— —
1. Insert
2. Delete

3.isEmpty € S1ze Guvolet

4.getData (acwss /
5. Create an empty list €~ Casluco, -

List Implementations
1. Q‘./\\(eg L5

> 17 e

2. Ao G\

T [I 1/

Linked List

c\v\'a next
’—"»

¢ | & s | 6 6 |2 6 s &

0

TL“\§ 'S chdn of obWytds =3 ’L)'F;Q Lod /\IO\)Q

TF - 2_&}0'/ o Mo % fype T

List.h
28 | class LlstNode {
29 T & data; B/(T (oa 1:("37 &'dd\' VA \/a\u‘{
30 ListNode * next
31 ListNode (T & data) : data(data), next (NULL) { }
32 | }; ‘/
NS Ok

v Ghlle chete R
Why is data stored asarefere?cs (b st) (A valie)
Ly V'\I'o\.\ \% "—(AQ uge Case of oq M“fl ("P\/

ef—

" & Na ‘Fj‘\l\\‘f/ q“<)<q|-:Q,\ n@_&%
g ‘ | g
G An a6S (amer be NP
L

apxt
Why is next a pointer? My <t be ot | \ f; ¢
-— - - ‘
L ’D/c ..A' (on be /\M”P"V

Caluwoys S S oRet

List.h

1| #pragma once How do | access list given head ?
: S R

4 clas { e = >
5 public: head _ C (S (

I oo =Y
28 void insertAtFront (const T& t);
2 t :
33 private: ¢ as ¢ Skeecd L \5\- M&Q Focacr s Il/\eqé_)
31 class
32 T & data; =~ .
33 ListNode * next; Cuie = (e =2 /\l°X+/
34 ListNode (T & data)
35 data(data), next (NULL) { } 5
38 ListNode *head_j
33 " Y (K) t% we MouR 'lqem) (CA
4 ...

s for (1) (VY Go Back warX

.\\'cm |..t\ L.s
79 Q\/e,(l' b ad¥ '\3/?\/)

List.h

79

#pragma once

class List {
public:
/* ... */

void insertAtFront(const t);

private:
class ListNode {
& data;
istNode * next;

ListNode @& data)
data (data), next (NULL) { }
};

ListNode *head ;

/* ... */

What is missing in this code?

List.h

List.hpp

#pragma once

template <typename T>
class List {
public:
[* ... */

void insertAtFront(const T& t);

private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data(data), next (NULL) { }

i g
ListNode *head;;

/* ... */

}; é‘l\/le

|
(../ Cl/\(h[e
#include "List.hpp"

OWCoOoOJdJonUldWN =

Tfm?‘a\{a (wc\tb,,.; ‘\,\ ‘L??

void List<T>::insertAtFront (const T& t)

{

[/ Ta Uiza
of lagA AT Frgt()

Mo.n, PP
osklnt)

Linked List: insertAtFront(data)

head r

C

'Y

Ctoppet hete

S

'Y

">

2

'Y

’»

2

'Y

0

List.h

List.hpp

#pragma once

template <typename T>
class List {
public:
/* ... */
private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data (data) , next (NULL) { }

}i
ListNode *head ;
/* ... */

}i

#include "List.hpp"

WO dWN =

template <typename T>

void List<T>::insertAtFront (const T& t)

{

ListNode *tmp = new ListNode (data) ;

tmp->next = head ;

head = tmp;

Linked List: insert(data, index) insert(d,3)

> ¢

head_o/-c(s (’»z (’bz 6§ | 5| &

A B C D

To insert a new ListNode at index 3, we need to modify which node?

Olgzln
5

Join Code: 225

Linked List: insert(data, index) insert(d,3)

head r

C

'Y

S

'Y

">

2

'Y

’»

2

'Y

—

5

'Y

0

Linked List: _index(index)

head r

C

'Y

S

'Y

">

2

'Y

0

Linked List: index(index) ?é'{f-’-lil

head c|l & s | & |2 & 26 Eﬁ
Join Code: 225

What should the return type of _index() be?

[template <class T>]
(AT & (B) ListNode

(C) ListNode * (D) ListNode *&

List.hpp

58 | template <typename T>
59| typename List<T>::ListNode *& List<T>:: index(unsigned index) {

60 return index(index, head)
61|}

template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index, ListNode *& root) {

List.hpp

58 | template <typename T>
59 | typename List<T>::ListNode *& List<T>:: index(unsigned index) {

60 return index(index, head)
61|}

template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index, ListNode *& root) {

if (index == | | node == nullptr) {

return node;

}

return index(index - 1, root -> next);

List.hpp

// Iterative Solution:
template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index) ({
if (index == 0) { return head; }
else {
ListNode *curr = head;
for (unsigned i = 0; i < index - 1; i++) {
curr = curr->next;

OWCoOoOJdJonUldWDN =

}

10 return curr->next;

11 }
12|}

Which solution is better (iterative or recursive)?

Linked List: insert(data, index) @

">

head € | c | € s | & |6 2|6 |s|é&

1) Get reference to previous node’s next
ListNode *& curr = index(index);

2) Create new ListNode

ListNode * tmp = new ListNode (data) ;
3) Update new ListNode’s next

tmp->next = curr;

4) Modify the previous node to point to new ListNode

curr = tmp;

WO dWN =

List.hpp

template <typename T>
void List<T>::insertAtFront (const T& t)

{
ListNode *tmp = new ListNode(t) ;
tmp->next = head ;

head = tmp;

WO dWN =

template <typename T>
void List<T>::insert(const T & data,
unsigned index) ({

ListNode *& curr = index(index) ;

ListNode * tmp = new ListNode (data) ;

tmp->next = curr;

curr = tmp;

Next Time: List Random Access []

Given a list L, what operations canwedoon L[]?

What return type should this function have?

