
Department of Computer Science

Data Structures
Lists and List ADT

January 26, 2026 CS 225
Brad Solomon

Enrolling in CS 199-225

1. Register for CS 225 section AH (CRN 70578)

2. Fill out the appropriate Honors Credit Learning Agreement

James Scholar Enrollment:

Check your individual college for James Scholar deadlines

Standard Enrollment:

1. Register for CS 199-225 (CRN 61879)

This is a pass-fail grade and a 0-credit course

Office Hour Etiquette

Schedule and link to queue on the website

Pay attention to the rules!

1. Be in Siebel Basement

2. Tag questions

3. Ask one specific question

4. Include a specific location

5. Include both your name and Discord ID

https://courses.grainger.illinois.edu/cs225/info/office-hours/

MP_Stickers Released

An introduction to assignments in CS 225

A focused look at memory management / Rule of Three

Practice with Image processing / code testing

No extra credit / early submission for this MP!

Be sure to set up your Illinois CS 225 Git repo!

General MP Tips

Start by reading the web page!

Take a look at the doxygen for interface requirements

The implementation is decided by you!

Most autograder tests are provided for you locally

MP_Stickers Highlights

Part 1: test_invert()

Your first example of a templated function!
template <class T>
bool test_invert(){
 // Your code here
 // (As this is the only
templated function, we aren't
using a .hpp file in this
instance)
 return false;
}

1
2
3
4
5
…

28
29
30
31
32

33
34

MP_Stickers Highlights

Part 2: StickerSheet

Big Picture: Memory Management! (Who owns what?)
Read the docs!

Exam 0 (1/26 — 1/29)

An introduction to CBTF exam environment / expectations

Quiz on foundational knowledge from all pre-reqs

Practice questions can be found on PL

Topics covered can be found on website

Registration open now

https://courses.engr.illinois.edu/cs225/sp2026/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

Define the functions and operations of the List ADT

Discuss list implementation strategies

Explore how to code and use a linked list

Practice fundamentals of C++ in the context of lists

Last time: Memory management

Local memory on the stack is managed by the computer

Heap memory allocated by new and freed by delete

Pass by value makes a copy of the object

Pass by pointer can be dereferenced to modify an object

Pass by reference modifies the object directly

Memory Management - Ownership
Pass by Value:

Pass by Pointer to Value:

Pass by Reference:

Ex: addBook(Book book)

Ex: addBook(Book* book)

Ex: addBook(Book& book)

A local copy of the original

An address on the heap

An alias to an existing variable

OriginalCopy

P 0x001

X=Local var Y
is X

Templates
A way to write generic code whose type is determined
during compilation

Templates
A way to write generic code whose type is determined
during compilation

1. Templates are a recipe for code using generic types

Templates
A way to write generic code whose type is determined
during compilation

1. Templates are a recipe for code using generic types

2. The compiler uses templates to generate C++ code when needed

T sum(T a, T b){
...
}

T max(T a, T b) {
 T result;
 result = (a > b) ? a : b;
 return result;
}

template1.hpp
1
2
3
4
5
6
7

template <typename T>

Templates are very useful!

What is your favorite data structure?

A) Lists B) Trees

C) Graphs D) Hash Tables

5

4

6

v

u

w

a c

b
z

d

0 Apple
1 ∅

2 Pear

Join Code: 225

Your favorite data structure: Trees

5

15 9

25

4

6

7 13

1116 1214

Your favorite data structure: Trees

5

15 9

25

4

6

7 13

1116 1214

4 5 6 15 9 7 20 16 25 14 12 11

1 2 3 4 5 6 7 8 9 10 11 120 13 1514

-3 8

23

25 31

42

43 55

80

90

Lists

Your favorite data structure: Graphs

v

u

w

a c

b
z

d

Your favorite data structure: Graphs

v

u

w

a c

b
z

d

u

v

w

z

u v a

v w b

u w c

w z d

Lists

Your favorite data structure: Hash Tables

0
1 ∅
2
3 ∅
4
5 ∅
6 ∅
7
8 ∅
9 ∅
10 ∅

Greg
A
∅

Bret
A-

Betty
B

Bob
B+
∅

Ali
B+

Alice
A+

Anna
A-
∅

Lily
B+

Laura
A

Sue
B
∅

1
0
1
0
1
0
0
1
0
0
0

H = {h1, h2, . . . , hk}

So 100% of people are excited about lists!

A) Lists B) Trees

C) Graphs D) Hash Tables

5

4

6

v

u

w

a c

b
z

d

0 Apple
1 ∅

2 Pear

Note: Not every tree / graph / hash is actually a list :)

Abstract Data Types
A way of describing a data type as a combination of:

Data being stored by the data type

Operations that can be performed on the data type

The actual implementation details of the ADT aren’t relevant!

List ADT (What do we want our list to do?)

List ADT
A list is an ordered collection of items

Items can be either heterogeneous or homogenous

The list can be of a fixed size or is resizable

A minimal set of operations (that can be used to create all others):
1. Insert

2. Delete

3. isEmpty

4. getData

5. Create an empty list

List Implementations
1.

2.

Linked List

C S 2 2 5
Ø

class ListNode {
 T & data;
 ListNode * next;
 ListNode(T & data) : data(data), next(NULL) { }
};

List.h
28
29
30
31
32

Why is data stored as a reference?

Why is next a pointer?

#pragma once

class List {
 public:
 /* ... */
 void insertAtFront(const T& t);

 private:
 class ListNode {
 T & data;
 ListNode * next;
 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;

 /* ... */

};

List.h
1
2
3
4
5
…

28
29
30
31
32
33
34
35
36
37
38
39
40
…
…
…

79
79

How do I access list given head_?

C Shead_

#pragma once

class List {
 public:
 /* ... */
 void insertAtFront(const T& t);

 private:
 class ListNode {
 T & data;
 ListNode * next;
 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;

 /* ... */

};

List.h
1
2
3
4
5
…

28
29
30
31
32
33
34
35
36
37
38
39
40
…
…
…

79
79

What is missing in this code?

#pragma once

template <typename T>
class List {
 public:
 /* ... */
 void insertAtFront(const T& t);

 private:
 class ListNode {
 T & data;
 ListNode * next;
 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;

 /* ... */

};

#include "List.hpp"

List.h
1
2
3
4
5
…

28
29
30
31
32
33
34
35
36
37
38
39
40
…
…
…

79
79

void List<T>::insertAtFront(const T& t)
{

}

List.hpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Linked List: insertAtFront(data)

C S 2 2 5
Ø

head_

#pragma once

template <typename T>
class List {
 public:
 /* ... */
 private:
 class ListNode {
 T & data;
 ListNode * next;
 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;

 /* ... */

};

#include "List.hpp"

List.h
1
2
3
4
5
…

28
29
30
31
32

33
34
35
36
37
38
39
…
…

79
79

template <typename T>
void List<T>::insertAtFront(const T& t)
{

 ListNode *tmp = new ListNode(data);

 tmp->next = head_;

 head_ = tmp;

}

List.hpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Linked List: insert(data, index)

C S 2 2 5
Ø

head_

insert(d,3)

To insert a new ListNode at index 3, we need to modify which node?

A B C D

Join Code: 225

Linked List: insert(data, index)

C S 2 2 5
Ø

head_

insert(d,3)

Linked List: _index(index)

C S 2 2 5
Ø

head_

Linked List: _index(index)

What should the return type of _index() be?

(A) T & (B) ListNode

(C) ListNode * (D) ListNode *&

[template <class T>]

C S 2 2head_
Join Code: 225

template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index){
	 return _index(index, head_)
}

List.hpp
58
59
60
61

template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index, ListNode *& root){

}

63
64
65
66
67
68
69
70
71
72
73

template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index){
	 return _index(index, head_)
}

List.hpp
58
59
60
61

template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index, ListNode *& root){

if (index == 0 || node == nullptr){
 return node;
}

return _index(index - 1, root -> next);

}

63
64
65
66
67
68
69
70
71
72
73

// Iterative Solution:
template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index) {
 if (index == 0) { return head; }
 else {
 ListNode *curr = head;
 for (unsigned i = 0; i < index - 1; i++) {
 curr = curr->next;
 }
 return curr->next;
 }
}

List.hpp
1
2
3
4
5
6
7
8
9

10
11
12

Which solution is better (iterative or recursive)?

Linked List: insert(data, index)

C S 2 2 5
Ø

head_

1) Get reference to previous node’s next

 ListNode *& curr = _index(index);

2) Create new ListNode

 ListNode * tmp = new ListNode(data);

3) Update new ListNode’s next

 tmp->next = curr;

4) Modify the previous node to point to new ListNode

 curr = tmp;

template <typename T>
void List<T>::insert(const T & data,
unsigned index) {

 ListNode *& curr = _index(index);

 ListNode * tmp = new ListNode(data);

 tmp->next = curr;

 curr = tmp;
}

List.hpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

template <typename T>
void List<T>::insertAtFront(const T& t)
{
 ListNode *tmp = new ListNode(t);

 tmp->next = head_;

 head_ = tmp;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Next Time: List Random Access []
Given a list L, what operations can we do on L[]?

What return type should this function have?

