
Department of Computer Science

Data Structures

CS 225
Brad Solomon

January 23, 2026

C++ Review

Do you want to do research?. . .

Research Experience

Networking

Soft and Hard Skill Development

1 credit hour + GPA boost

Resume Booster

Come apply to URSA!
Undergraduate Research in Scientific Advancement

Benefits:

apply for
fall

student
run

Scan for:
• Website

• Application

• Interest form

. . . Are you a freshman or sophomore?

New Resources on Website

Inheritance

Pointers and References

The Resources page on websites updates with lectures!

https://courses.grainger.illinois.edu/cs225/sp2026/resources/inheritance/
https://courses.grainger.illinois.edu/cs225/sp2026/resources/pointers-ref/

Testing a ‘Clicker’ Set-up!

Join Code: 225

Have you signed up to take exam 0?

A) Yes!

B) No!

https://clicker.cs.illinois.edu/

You can participate by going to website:

https://clicker.cs.illinois.edu/

Exam 0 (1/26 — 1/29)

An introduction to CBTF exam environment / expectations

Quiz on foundational knowledge from all pre-reqs

Practice questions can be found on PL

Topics covered can be found on website

Registration open now :)

https://courses.engr.illinois.edu/cs225/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

A brief high level review of C++

Brainstorm the List Abstract Data Types (ADT)

Fundamentals of Objects / Classes

Memory Management and Ownership

Pointers

Encapsulation - Classes

Internal Implementation External Interface

Abstraction / organization separating:

Brainstorming a ‘Library’ class
class Library {
public:

private:

};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Memory Management — Ownership

class Library{
public:
 void addBook(Book * book);
 void removeBook(std::string title);
 void returnBook(Book * book);

private:
 std::vector<Book*> in;
 std::vector<Book*> out;
};

1
2
3
4
5
6
7
8
9

10
11

Imagine I have a Library class (and hidden Book class):

Memory Management — Ownership
Imagine I have a Library class:

Pretest: Does Library class ‘own’ the Books it is storing?
A) Yes! B) No! C) Not sure

Join Code: 225

class Library{
public:
 void addBook(Book * book);
 void removeBook(std::string title);
 void returnBook(Book * book);

private:
 std::vector<Book*> in;
 std::vector<Book*> out;
};

1
2
3
4
5
6
7
8
9

10
11

Pointers

Pointers store memory addresses
int a = 3;

int *p = &a;

a

p

Pointers

a 3

p 0xfffffc6216cc

Pointers store memory addresses
int a = 3;

Does a change? Does p?

p++;

int *p = &a;

Pointers

a 3

p 0xfffffc6216cc

Pointers store memory addresses
int a = 3;

Does a change? Does p?

(*p)++;

int *p = &a;

Memory Management
Stack:

Heap:

Ex:

Local variable storage

Dynamic storage

Ex:

int x = 5;

int* x = new int[5];

Memory Management - Parameters
Pass by Value: A local copy of the original

Pass by Pointer to Value: An address on the heap

Pass by Reference: An alias to an existing variable

Ex: addBook(Book book)

Ex: addBook(Book* book)

Ex: addBook(Book& book)

Memory Management - Parameters

class Library {
public:
 int numBooks;
 std::string * titles;
};

// *** Function A ***
std::string getFirstBook(Library l){
 return (l.numBooks > 0) ? l.titles[0] : "None";
}

// *** Function B ***
std::string getFirstBook(Library * l){
 return(l->numBooks > 0) ? l->titles[0] : "None";
}

// *** Function C ***
std::string getFirstBook(Library & l){
 return (l.numBooks > 0) ? l.titles[0] : "None";
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Which implementation do you prefer?

Memory Management

Local memory on the stack is managed by the computer

Heap memory allocated by new and freed by delete

Pass by value makes a copy of the object

Pass by pointer can be dereferenced to modify an object

Pass by reference modifies the object directly

Memory Management — Ownership
What does ownership mean in C++?

Memory Management — Ownership
class Library{
public:
 void addBook(Book * book);

 void removeBook(std::string title);

 void returnBook(Book * book);
private:

 std::vector<Book*> in;

 std::vector<Book*> out;

};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Does Library ‘own’ Books?

A) Yes!
B) No!
C) Not sure

Memory Management — Ownership
class Library{
public:
 void addBook(Book * book);

 void removeBook(std::string title);

 void returnBook(Book * book);
private:

 std::vector<Book*> in;

 std::vector<Book*> out;

};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Does Library ‘own’ Books?

Are they destroyed when the
Library destructor is called?

A) Yes!
B) No!
C) Not sure

Memory Management — Ownership
class Library{
public:
 void addBook(Book book);

 void removeBook(std::string title);

 void returnBook(Book book);
private:

 std::vector<Book> in;

 std::vector<Book> out;

};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Does Library ‘own’ Books?

A) Yes!
B) No!
C) Not sure

Memory Management — Ownership
class Library{
public:
 void addBook(Book book);

 void removeBook(std::string title);

 void returnBook(Book book);
private:

 std::vector<Book> in;

 std::vector<Book> out;

};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Does Library ‘own’ Books?

A) Yes!
B) No!
C) Not sure

Are they destroyed when the
Library destructor is called?

Memory Management — Ownership
class Library{
public:
 void addBook(const Book& book);

 void removeBook(std::string title);

 void returnBook(const Book& book);
private:

 std::vector<Book*> in;

 std::vector<Book*> out;

};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Does Library ‘own’ Books?

Are they destroyed when the
Library destructor is called?

A) Yes!
B) No!
C) Not sure

Memory Management — Ownership

A ‘litmus test’ of ownership — who handles destruction?

Vector’s consolation prize — vector handles destruction

If we are storing pointers or references, not our problem!

The owner of an object is responsible for its resource
management (particularly allocation / deallocation)

The Rule of Three
If it is necessary to define any one of these three functions in a class,
it will be necessary to define all three of these functions:

1. Destructor — Called when we delete object

2. Copy Constructor — Make a new object as a copy of an existing one

3. Copy assignment operator — Assign value from existing X to Y

‘The Rule of Zero'

A corollary to Rule of Three

Classes that declare custom destructors, copy/move constructors or
copy/move assignment operators should deal exclusively with
ownership. Other classes should not declare custom destructors,
copy/move constructors or copy/move assignment operators

— Scott Meyers

class Library {
public:
 int numBooks;
 std::string * titles;
 ~Library();
 Library(int num, std::string* list);
};

Library::~Library(){
 delete titles;
 titles = nullptr;
}

Library::Library(int num, std::string* list){
 numBooks = inNum;
 titles = new std::string[inNum];
 std::copy(inList, inList + inNum, titles);
}

int main(){
 std::string myBooks[3] = {"A", "B", "C"};
 Library L1(3, myBooks);
 Library L2(L1);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

class Library {
public:
 int numBooks;
 std::string * titles;
 ~Library();
 Library(int num, std::string* list);
};

Library::~Library(){
 delete titles;
 titles = nullptr;
}

Library::Library(int num, std::string* list){
 numBooks = inNum;
 titles = new std::string[inNum];
 std::copy(inList, inList + inNum, titles);
}

int main(){
 std::string myBooks[3] = {"A", "B", "C"};
 Library L1(3, myBooks);
 Library L2(L1);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Whats wrong with this code?

A. Can’t create L2 Library obj

B. Don’t delete either Library

C. The second object being
 deleted crashes

Questions?

Templates
A way to write generic code whose type is determined
during completion

Templates
A way to write generic code whose type is determined
during completion

1. Templates are a recipe for code using generic types

Templates
A way to write generic code whose type is determined
during completion

1. Templates are a recipe for code using generic types

2. The compiler uses templates to generate C++ code when needed

template <typename T>
T sum(T a, T b){
...
}

T max(T a, T b) {
 T result;
 result = (a > b) ? a : b;
 return result;
}

template1.cpp
1
2
3
4
5
6
7

template <typename T>

Templates are very useful!

List Abstract Data Type
What is the expected interface for a list?

