Data Structures

C++ Review

CS 225 January 23, 2026
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Do you want to do research?. ..
. . . Are you a freshman or sophomore?

Come apply to URSA!

Undergraduate Research in Scientific Advancement

Benefits:
Research Experience
Networking
Soft and Hard Skill Development Scan for:
1 credit hour + GPA boost * Website
« Application

Resume Booster
* |Interest form

New Resources on Website

The Resources page on websites updates with lectures!

Inheritance

Pointers and References

https://courses.grainger.illinois.edu/cs225/sp2026/resources/inheritance/
https://courses.grainger.illinois.edu/cs225/sp2026/resources/pointers-ref/

Testing a ‘Clicker’ Set-up! E E

i ?
Have you signed up to take exam 0 E —
A) Yes!

i

Join Code: 225

B) No!

You can participate by going to website:

https://clicker.cs.illinois.edu/

https://clicker.cs.illinois.edu/

[=]}xd[m]
Exam 0 (1/26 — 1/29) ﬁ’ﬁ ()
o
An introduction to CBTF exam environment / expectations
Quiz on foundational knowledge from all pre-reqgs
Practice questions can be found on PL

Topics covered can be found on website

Registration open now :)

https://courses.engr.illinois.edu/cs225/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

A brief high level review of C++
Fundamentals of Objects / Classes
Pointers
Memory Management and Ownership

Brainstorm the List Abstract Data Types (ADT)

Encapsulation - Classes

Abstraction / organization separating:

Internal Implementation External Interface

i :

¥ TR YA TR O

= |7
1)
=
=
=)
=

A

‘vw..

Brainstorming a ‘Library’ class

class Library ({
public:

OooJdJouUldkd WDNBKE

13|private:

Memory Management — Ownership

Imagine | have a Library class (and hidden Book class):

class Library{

public:
void addBook (Book * book) ;
void removeBook (std::string title);
void returnBook (Book * book) ;

private:
std: :vector<Book*> in;
std: :vector<Book*> out;

};

R
RoOoOwWwWoOoNJoOUId WN K

Memory Management — Ownership E E
Imagine | have a Library class: ?Fﬁ
E i

1| class Library{

2|public:

3 void addBook (Book * book) ;

4 void removeBook (std::string title); .
5 void returnBook (Book * book) ; JOln COde. 225
6

7| private:

8 std: :vector<Book*> in;

9 std: :vector<Book*> out;
10|}’
11

Pretest: Does Library class ‘own’the Books it is storing?
A) Yes! B) No! C) Not sure

Pointers

Pointers store memory addresses
. a

int *p = &a;

P

Pointers

Pointers store memory addresses

int a = 3;
int *p = &a;

pt+;

Does a change? Does p?

a
p

Pointers

Pointers store memory addresses

int a = 3;
int *p = &a;
(*p) ++;

Does a change? Does p?

a
p

Memory Management

Stack: Local variable storage

Ex: int x = 5;

Heap: Dynamic storage

Ex: int* Xx new int[5];

HOBRIT

Memory Management - Parameters

Pass by Value: A local copy of the original

Ex: addBook (Book book)

Pass by Pointer to Value: An address on the heap
Ex: addBook (Book* book)

Pass by Reference: An alias to an existing variable

Ex: addBook (Book& book)

Memory Management - Parameters

Which implementation do you prefer?

class Library {
public:

int numBooks;

std: :string * titles;
};

// *** Function A **x*
std: :string getFirstBook (Library 1) {

OWoJdJooUbd WN PR

12}

14| // *** Function B ***
15| std: :string getFirstBook (Library * 1) {

16 return (1->numBooks > 0) ? 1->titles[0] : "None";

18}

20| // *** Function C **x*
21| std: :string getFirstBook (Library & 1) {

22 return (l.numBooks > 0) ? 1l.titles[0] : "None";

23}

10 return (l.numBooks > 0) ? 1l.titles[0] : "None";

Memory Management @
Local memory on the stack is managed by the computer
Heap memory allocated by new and freed by delete

Pass by value makes a copy of the object

Pass by pointer can be dereferenced to modify an object

Pass by reference modifies the object directly

Memory Management — Ownership

What does ownership mean in C++? el

Memory Management — Ownership I

OooJdJouUldkd WDNBKE

RRRRERRRRRR
OdoOUId WNRO

class Library{
public:
void addBook (Book * book) ;

void removeBook (std::string title);

void returnBook (Book * book) ;
private:

std: :vector<Book*> in;

std: : vector<Book*> out;

Does Library‘own’Books?

A) Yes!
B) No!
C) Not sure

Memory Management — Ownership ?'ﬁ:'ﬁ

1| class Library({

2|public:

3 void addBook (Book * book) ;

4

5

6 void removeBook (std::string title);
7

8

9 void returnBook (Book * book) ;
10| private:
11
12 std: :vector<Book*> in;
13
14

15 std: :vector<Book*> out;

16

17

18|}

Does Library‘own’Books?

A) Yes!
B) No!
C) Not sure

Are they destroyed when the
Library destructor is called?

Memory Management — Ownership I

OooJdJouUldkd WDNBKE

RRRRERRRRRR
OdoOUId WNRO

class Library{
public:
void addBook (Book book) ;

void removeBook (std::string title);

void returnBook (Book book) ;
private:

std: :vector<Book> in;

std: : vector<Book> out;

Does Library‘own’Books?

A) Yes!
B) No!
C) Not sure

J[]
Memory Management — Ownership %igﬁ

OooJdJouUldkd WDNBKE

RRRRERRRRRR
OdoOUId WNRO

class Library{
public:
void addBook (Book book) ;

void removeBook (std::string title);

void returnBook (Book book) ;
private:

std: :vector<Book> in;

std: : vector<Book> out;

[=]

Does Library‘own’Books?

A) Yes!
B) No!
C) Not sure

Are they destroyed when the
Library destructor is called?

Memory Management — Ownership ?'ﬁ:'ﬁ

1| class Library({

2|public:

3 void addBook (const Booké& book) ;

4

5

6 void removeBook (std::string title);
7

8

9 void returnBook (const Booké& book) ;
10| private:
11
12 std: :vector<Book*> in;
13
14

15 std: :vector<Book*> out;

16

17

18|}

Does Library‘own’Books?

A) Yes!
B) No!
C) Not sure

Are they destroyed when the
Library destructor is called?

Memory Management — Ownership @

The owner of an object is responsible for its resource
management (particularly allocation / deallocation)

A‘litmus test’ of ownership — who handles destruction?
If we are storing pointers or references, not our problem!

Vector’s consolation prize — vector handles destruction

The Rule of Three

If it is necessary to define any one of these three functions in a class,
it will be necessary to define all three of these functions:

1. Destructor — Called when we delete object

2. Copy Constructor — Make a new object as a copy of an existing one

3. Copy assignment operator — Assign value from existing Xto Y

‘The Rule of Zero'

A corollary to Rule of Three

Classes that declare custom destructors, copy/move constructors or
copy/move assignment operators should deal exclusively with
ownership. Other classes should not declare custom destructors,
copy/move constructors or copy/move assignment operators

— Scott Meyers

OoodJoouldkd WPNRE

MNMNMNMMMMNNDSDEREFRRRRRPRRRRR
b WMNROCOVOJdJONOUILEd_WMNEO

class Library ({
public:
int numBooks;
std: :string * titles;
~Library () ;
Library(int num, std::string* list);

};

Library: :~Library () {
delete titles;
titles = nullptr;

}

Library: :Library(int num, std::string* list) {
numBooks = inNum;
titles = new std::string[inNum];
std: :copy(inList, inList + inNum, titles);
}

int main () {
std: :string myBooks[3] = {"A", "B", "C"};
Library L1(3, myBooks);
Library L2(L1);
return O;

1| class Library ({ . .
2|public:) Whats wrong with this code?
3 int numBooks;

2 a0 A. Can't create L2 Library obj
6 Library(int num, std::string* list); . .

7|} B. Don't delete either Library
8

9({Library: :~Library () { 1 1
et C. The second object being
11 : titles = nullptr; deleted crashes
13

14| Library: :Library (int num, std::string* list) {

15 numBooks = inNum;

16 titles = new std::string[inNum];

17 std: :copy(inList, inList + inNum, titles);

18|}

19
20| int main () {
21 std: :string myBooks[3] = {"A", "B", "C"};
22 Library L1(3, myBooks);
23 Library L2(L1); E E
24 return O; =5
25|} I

ofs

Questions?

Templates

A way to write generic code whose type is determined
during completion

Templates

A way to write generic code whose type is determined
during completion

1. Templates are a recipe for code using generic types

Templates

A way to write generic code whose type is determined
during completion

1. Templates are a recipe for code using generic types

2. The compiler uses templates to generate C++ code when needed

template <typename T>
T sum(T a, T b){

}

templatel.cpp

template <typename T>

T max(T a, T b) {
T result;
result = (a > b) ? a : b;
return result;

}

SNSoobkd WN R

Templates are very useful!

List Abstract Data Type

What is the expected interface for a list?

