Data Structures

C++ Review
CS 225 January 23, 2026
Brad Solomon .
Lol -\~ N4

N

Lév‘"\‘) \'(;\\&.
N\

URBANA-CHAMPAIGN

UNIVERSITY OF - @
ILLINOIS "~
Department of Computer Science Y -4 X

7
n Pd' IH'fr &(J

Do you want to do research?. ..
. . . Are you a freshman or sophomore?

Come apply to URSA!

Undergraduate Research in Scientific Advancement

Benefits:
Research Experience

Networking
Soft and Hard Skill Development Scan for:
1 credit hour + GPA boost * Website
» Application

Resume Booster
* |Interest form

New Resources on Website

The Resources page on websites updates with lectures!

Inheritance

Pointers and References & K

https://courses.grainger.illinois.edu/cs225/sp2026/resources/inheritance/
https://courses.grainger.illinois.edu/cs225/sp2026/resources/pointers-ref/

Testing a ‘Clicker’ Set-up! E E

i ?
Have you s%ned up to take exam 0 E —
A) Yes! 1375

) -

BNo! <7, E i

Join Code: 225

You can participate by going to website:

https://clicker.cs.illinois.edu/

https://clicker.cs.illinois.edu/

Olrst0
Exam 0 (1/26 — 1/29) ﬁ’ﬁ ()
o
An introduction to CBTF exam environment / expectations

Quiz on foundational knowledge from all pre-reqgs

Practice questions can be found on PL

/ -

Topics covered can be found on website
R

Registration open now :)

https://courses.engr.illinois.edu/cs225/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

A brief high level review of C++

Fundamentals of Objects / Classes

Pointers

Memory Management and Ownership & m sty
A~ M e——— CHOrs
Brainstorm the List Abstract Data Types (ADT)

O Wwe e, et ths {ar =

Encapsulation - Classes

Abstraction / organization separating:

Internal Implementation / External Interface
SHow s cde dos 7 G gt gacl Faedin w11
i Wit

uy S fou!
7 bl G Doxyger (ducarst)

G Tupk > Subpat™
ek eadh £undon "y "
TF T'?:’ B| ways S}w"’ here

<) b/aw '\‘ C>‘J'+'I

i :

¥ TR YA TR O

= |7
1)
=
=
=)
=

A

‘vw..

Brainstorming a ‘Library’ class

OooJdJouUldkd WDNBKE

class Library { . ,
public: & 0ccessbl, oursdt Yhe dess

\,7 ~f-\-|¢_(ofF L:imKS W\é éﬂ""‘\((60/\"' <\

7 Chec Kok Boalk

L Pu Wi (onfa- " afolmeplo)\40\”5

private: e' Qaly Aless Ne :n’f"'nal\y
L Vedor é‘?—/up\oy ee)

O baok Quar ((“ho hes ¢ Check €

1 atefacé

Ok \bdo\-ﬁ)

Memory Management — Ownership

Imagine | have a Library class (and hidden Book class):

1| class Library({

2|public:

3 void addBook (Book * book) ;

4 void removeBook (std::string title);

5 void returnBook (Book * book) ;

6

7| private:

8 std: :vector<Book*> in;

9 std: :vector<Book*> outi:}
10|}/
11

. 0Bk |
) ") me
e n kg OVT

1% S I B)

class Library{
public:
void addBook (Book book) ;

void removeBook (std::string title); . .
void returnBook (Book * book) ; JOln COde. 225

private:
std: :vector<Book*>\ in;
std: : vector<Book*>/ out;

Memory Management — Ownership E E
Imagine | have a Library class: ?Fﬁ
E i

OooJdJouUldkd WPNE

10| };
11

Pretest: Does Library class ‘own’the Books it is storing?

A) Yes! B) No! C) Not sure
) S}n S ; G/Q Qon/g

Pointers

Pointers store memory addresses o
\ocal &
int a = 3; k)

(Qra()'('7
int *p = &a; <

j& (754 of

/\\ P

‘va\(/"le\f\ (

Pointers it AR
< ‘L“ ""‘P'H' wenbk
2 ‘d\'l I" 3 / V\,C/_K!

Pointers store memory addresses
X
int *p = &a; <z

pt+;

Does a change? Does p?
g p ‘m(/m\(,\l-(b £)(Q/\Q

9 Wo QT bewg S

I} of Szl wfr)

Pointers

Pointers store memory addresses

int a = 3;

f

int *p = &a;

(*p) ++; It — 9

=
¢Q (\f{(’(Mu

Does a change? Does p?
& Yes! 7 No!

d

s

P

I H
—C

Oxfffffcoe2l6ce

Memory Management

1 \ ‘ ﬂ"QZL CQA’\'@)C'“
Stack: Local variable storage) <xts ' >p¢

Ex: int x = 5; A

Heap: Dynamic storage

Ex: int* X

T
A“Yﬂf\:f\; T P«’V An }*“CIP 1: Musk

new int[5];
S——

dolete_

Pass by Value: A local copy of the original

Ex: addBook (Book book) bepK = [%
9 chwges o bk Aa’/\? Do/ 5%

Pass by Pointer to Value: An address on the heap

Ex: addBook (Book* b&ek)

G l’l“/\9f$ her ¢ q-\?{:«} _L(_
Pass by Reference: An alias to an existing variable redefinng K 1A

S —

—

° wbes, [0 al S(QPQ
Ex: addBook (Book& t%erle) TE raf oot to Pouber. ¢
Baokt p = €2 =

Memory Management - Parameters ?'ﬁ:'ﬁ

[] [] [] I
Which implementation do you prefer? G- brary
1[class Library { G % balbke
2|public:
2 int numBooks; 62_ — Y | \ \ \\H
5 std: :string * titles; \ '
6 }; e\
7
8|// *** Function A *** \/61 ve K% =
9/std: :string getFirstBook (Library 1) { /0 } O /5
12 return (l.numBooks > 0) ? l.titles[0] : "None";
12 }
13 '
14| // *** Function B **%* ?0\4"" (/ (||
15| std: :string getFirstBook (Library * 1) { =" g
13 return (1->numBooks > 0) ? 1->titles[0] : "None"; -
18! \J
19
20| // *** Function C *** (({i/’ / —
21| std: :string getFirstBook (Library & 1) { L’ _S
22 return (l.numBooks > 0) ? l.titles[0] : "None"; Le |
231} Cef (e’ h

Memory Management @
i
Local memory on the stack is managed by the computer

Heap memory allocated by new and freed by delete

e —
.

I

Pass by value makes a copy of the object
—

Pass by pointer can be dereferenced to modify an object
=

Pass by reference modifies the object directly
_—

Memory Management — Ownership

What does ownership mean in C++? — 52 = ”
Y \N\\O O\ua(a\lcﬁ/ de alo@e the ‘Lew? —

MPwaly

R — T

\A/L:lL\ (lu$S Ovas fhen \\m}‘

TN& n

Tosr
chors hegt _

Memory Management — Ownership ?'ﬁ:'ﬁ

1| class Library({

2|public:

3 void addBook (Book * book) ;

4

5

6 void removeBook (std::string title);
7

8

9 void returnBook (Book * book) ;
10| private:

11

12 std: :vector<Book*> in;

13

14

15 std: :vector<Book*> out;

16

17

18|}

Does Library‘own’Books?
A) Yes! °<

B) No! %%
C) Notsure .

A0
Memory Management — Ownership %igﬁ

OooJdJouUldkd WDNBKE

RRRRERRRRRR
OdoOUId WNRO

class Library{

public:
void

void
void
private:

std:

std:

addBock (Book * book) ;

removeBook (std: :string title);

returnBook (Book * book) ;

:vector<Book*> in;

:vector<Book*> out;

[=]

Does Library‘own’Books?

A) Yes!
B) No!
Not sure

Are they destroyed when the

Library destructor is called?

G Bk ¥ 8 Poithr do Bask
whil, exsie OL\PW)'”/Q

—

Memory Management — Ownership ?'ﬁ:'ﬁ

OooJdJouUldkd WDNBKE

RRRRERRRRRR
OdoOUId WNRO

class Library{
public:
void addBook (Book book) ;

void removeBook (std::string title);

void returnBook (Book book) ;
private:

std: :vector<Book> in;

std: : vector<Book> out;

Does Library‘own’Books?

A) Yes! 0%
B) No! ~:t=

C) Not sure —

A0
Memory Management — Ownership %igﬁ

OooJdJouUldkd WDNBKE

RRRRERRRRRR
oOdoOUTdWNRO

class Library{ DY 3
public: LO(O‘\ ds?
void addBook (Book book) ;
——

CPANA

void removeBook (std::string title);

void returnBook (Book book) ;
private:

std: :vector<Book> in;
=

std: : vector<Book> out;

]

LTH oy VRS ——

Vecky

ut

[=]

Does Library‘own’Books?

| T
<@ A Bodks

B) NO! A’*J\lw hase
afe laca)
C) Not sure

Are they destroyed when the
Library destructor is called?

Uva
= Beots

Memory Management — Ownership ?'ﬁ:'ﬁ

OooJdJouUldkd WDNBKE

RRRRERRRRRR
OdoOUId WNRO

class Library{

public:
void

void
void
private:

std:

std:

addBook (const Book& book) ;
\’\/\/_

removeBook (std: :string title);

returnBook (const Book& book) ;

:vector<Book*> in;

/

:vector<Book*> out;

Does Library‘own’Books?

A) Yes!

(61 Nol

C) Not sure

Are they destroyed when the
Library destructor is called?

Memory Management — Ownership @

The owner of an object is responsible for its resource
manW(pafﬁcuﬁFW allocation / deallocation)

A‘litmus test’ of ownership — who handles destruction?

If we are storing pointers or references, not our problem!

T e—

Vector’s cWrize — vector handles destruction
N >

The Rule of Three

If it is necessary to define any one of these three functions in a class,
it will be necessary to define all three of these functions:

1. Destructor — Called when we delete object

2. Copy Constructor — Make a new object as a copy of an existing one
—

3. Copy assignment operator — Assign value from existing Xto Y
— T

‘The Rule of Zero'

A corollary to Rule of Three

e

Classes that declare custom destructors, copy/move constructors or

\

copy/move assignment operators should deal exclusively with
@verér_smther classes should not declare custom destructors,

-

copy/move constructors or copy/move assignment operators
— Scott Meyers]
\ fe
:\:‘(_\ T c\\k/\ef 0\”0(4+(/)c)* My f]D/oHeM 1LQ < [10(4

OoodJoouldkd WPNRE

MNMNMNMMMMNNDSDEREFRRRRRPRRRRR
b WMNROCOVOJdJONOUILEd_WMNEO

class Library ({

public:

};

Library:

}

Library: :Library(int num,

}

\
int numBooks; L/ (\w]) \.§
std: :string * titles;
~Library () ;

Library(int num, std::string* list);

Gl
. ~Library () { qei s
delete titles;

titles nullptr;

std: :string* list) {
numBooks = inNum;
titles new std::string[inNum];

std: :copy(inList, inList + inNum, titles);

int main () {

std: :string myBooks[3] = {"A",
Library L1(3, myBooks) ;
Library L2(L1);

return O;

X

"B", HCH} ;

((waum' !
o Ry endeeder
< shallow

1l
& 3/
> %
LY <
(Z: {

OoodJoouldkd WPNRE

MNMNMNMMMMNNDSDEREFRRRRRPRRRRR
b WMNROCOVOJdJONOUILEd_WMNEO

class Library ({
public:
int numBooks;
std: :string * titles;
~Library () ;
Library(int num, std:

};

Library: :~Library () {
delete titles;
titles = nullptr;

}

Library: :Library(int num, std:

numBooks = inNum;
titles = pew std:

}

int main () {
std:
Library L1(3, myBooks)
Library L2(L1);
return O;

:string* list);

:string myBooks[3] = {"A",

Whats wrong with this code?
A. Can't create L2 Library obj

:string* list) {

:string[inNum];
std: :copy(inList, inList + inNum,

"B", "C"} ;

C. The second object being

titles);

ither

L)

deleted crashes

\

q: Sbnl +k€ bﬁw@; GL49
Yo S"'L()(’/]'} ?WS‘.,\\U’\
G Pure 4 q fev’

_;
S The better X '\
Majhe dop X1 ﬁﬁ

Questions?

Templates

A way to write generic code whose type is determined
during completion

Templates

A way to write generic code whose type is determined
during completion

1. Templates are a recipe for code using generic types

Templates

A way to write generic code whose type is determined
during completion

1. Templates are a recipe for code using generic types

2. The compiler uses templates to generate C++ code when needed

template <typename T>
T sum(T a, T b){

}

templatel.cpp

template <typename T>

T max(T a, T b) {
T result;
result = (a > b) ? a : b;
return result;

}

SNSoobkd WN R

Templates are very useful!

List Abstract Data Type

What is the expected interface for a list?

