
Computer Science - University of Illinois Urbana-Champaign Fall 2025

CS 225 - Lecture 6 Scribe : Harsha Srimath Tirumala

1 Learning Goals

↪→ Design choices for Data variables of array lists

↪→ Review of array list implementations

↪→ Amortized analysis

↪→ Resize strategies for array lists at capacity : Resize +2

2 Linked Lists - Efficient modify, Inefficient find

Linked lists support efficient modifications of data when given access to the relevant location(s). However, linked

lists are inefficient for operations like random access which require finding.

3 Array Lists

In array lists, an array is allocated as continuous memory. There are three data variables for efficient array usage:

↪→ Data : Start position of an array (pointer to array start)

↪→ Size : Current number of items in array (pointer to next avaialble space)

↪→ Capacity : Total number of allocated spaces (pointer past end of array)

19 5 13 17 11

data size cap

↪→ Pointer Arithmetic - The design choice allows us to use pointer arithmetic directly on the variables, such as:

items in array = size − data = 5

4 Array list Operations

↪→ Access random(index) : O(1) time as item can be directly accessed at data + index

↪→ insertAtFront(data) : O(n) because all subsequent elements must be moved to the right.

↪→ insertAtBack(data) : O(1) when array is not full but O(n) when array is at capacity as all elements need

to be copied to a new, larger array list.

↪→ insert(data, index) : O(n) in the worst case as all subsequent data must be shifted.

1

Computer Science - University of Illinois Urbana-Champaign Fall 2025

Table 1: Array list (not at capacity)

@Front @Back @Index

Insert O(n) O(1) O(n)

Delete O(n) O(1) O(n)

5 Array list (at Capacity)

Since we don’t own space past capacity, any subsequent addition requires allocation of new memory.

5.1 Resize : +2 elements

Consider the strategy of adding 2 elements when the array list is at capacity (as illustrated below). Note that using

this strategy, the amount of work done for the first insert at capacity is O(size) - as all the elements must be copied

to the newly allocated array list. However, the next insert can be done in O(1) - as the list is not at capacity anymore.

19 5 13 17

19 5 13 17 3

19 5 13 17 3 7

19 5 13 17 3 7 31

19 5 13 17 3 7 31 23

19 5 13 17 3 7 31 23 29

(In the above illustration, colored lists are newly allocated and colored nodes have been copied)

Let T (n) denote the time taken to populate an array list of size n. It is easy to see that :

T (n) = T (n− 2) + (n− 2) + 1 + 1 = T (n− 2) + n

This is because when the list was at capacity (n− 2), we had to copy (n− 2) elements into the new n sized array

list and then insert elements (n− 1) and n. Solving for T (n) :

T (n) =

n
2∑

i=0

(n− 2i) =

n
2∑

i=0

n−
n
2∑

i=0

2i =
(n
2
+ 1

)
n− 2

(
n
2

) (
n
2 + 1

)
2

=
n2

4
+

n

2
= Θ(n2)

This shows us that inserting n elements into an array list following the “Resize +2” strategy requires Θ(n2) work.

Observe that the worst case complexity of a particular insert is Θ(n) - which happens when an insert is called with

the array list at capacity Θ(n). The amortized cost of each insert is
n2

4 +n
2

n = n
4 + 1

2 = Θ(n).

In the next lecture, we will discuss a more efficient resize strategy.

2

	Learning Goals
	Linked Lists - Efficient modify, Inefficient find
	Array Lists
	Array list Operations
	Array list (at Capacity)
	Resize : +2 elements

