
Department of Computer Science

String Algorithms and Data Structures

CS 199-225
Brad Solomon

January 26, 2026

Introduction and Pattern Matching

Who am I?
Brad Solomon

Teaching Assistant Professor, Computer Science

2233 Siebel Center for Computer Science

Email: bradsol@illinois.edu

Office Hours:

Thursdays, 11:00 AM - 12:00 PM

… or by appointment

https://courses.engr.illinois.edu/cs225/info/office-hours/

mailto:bradsol@illinois.edu
https://courses.engr.illinois.edu/cs225/info/office-hours/

Who are you?

Take a moment to introduce yourself to your neighbor!

(Your name, a hobby you enjoy, and one thing you hope to get
out of this class)

Piazza Sign up Link: https://piazza.com/illinois/spring2026/cs199225

https://piazza.com/illinois/spring2026/cs199225

What is this class about?

String Algorithms and Data Structures

Exact string matching

Compressed self-indexes

Inexact pattern matching
 Query: 161 atatcaccacgtcaaaggtgactccaactcca---ccactccattttgtt
 ||||||||||||||||||||||||||||| | | | || ||||
 Sbjct: 481 atatcaccacgtcaaaggtgactccaact-tattgatagtgttttatgtt

Foundational

What is this class about?

String Algorithms and Data Structures

Exact string matching

Compressed self-indexes

Inexact pattern matching
 Query: 161 atatcaccacgtcaaaggtgactccaactcca---ccactccattttgtt
 ||||||||||||||||||||||||||||| | | | || ||||
 Sbjct: 481 atatcaccacgtcaaaggtgactccaact-tattgatagtgttttatgtt

Foundational
plus cool stuff chosen

by you!

What will you get out of this class?

Understand fundamental string algorithms

Experience applying data structures, algorithms, and algorithm
design principles to real world problems

Justify implementation choices based on theoretical or practical
considerations

Build a foundation for future data science projects

Course Webpage

https://courses.grainger.illinois.edu/cs225/sp2026/pages/honors.html

All course information and links can be found here!

Mediaspace recordings

Piazza

Syllabus

https://courses.grainger.illinois.edu/cs225/pages/honors.html

Syllabus
Please read — many important topics:

Course Expectations

Grading

Commitments to Mental Health

Course Goals & Topics

Ethics and Academic Integrity Policies

Commitments to Diversity, Equity, Inclusion

Course Expectations

Weekly assignments (11 total):

Small assignments (~ 1-3 hours / week)

One week extensions for 80% credit

Must pass at least 8 of them (80% is passing)

Must submit your own work

Course Expectations

Class participation:

No attendance grades

Ask questions (synchronously or asynchronously)

Participate in breakout rooms and polls

Mental Health

McKinley Health Center: 217-333-2700

1109 South Lincoln Avenue, Urbana, Illinois 61801

This class should be low-stress, light work-load.

UIUC offers a variety of confidential services:

Counseling Center: 217-333-3704

610 East John Street Champaign, IL 61820

Diversity, Equity, and Inclusion

Staff (CAs and TAs for CS 225)

Faculty (Brad Solomon)

“If you witness or experience racism, discrimination, micro-aggressions,
or other offensive behavior, you are encouraged to bring this to the
attention of…”

Campus Belonging Office (Link)

The Office of Student Conflict Resolution (Link)

CS CARES (Link)

https://diversity.illinois.edu/diversity-campus-culture/belonging-resources/
http://conflictresolution.illinois.edu/policies/report-violation/
https://cs.illinois.edu/about/cs-cares

Learning Objectives

Review fundamentals of strings

Introduce exact pattern matching problem

What is a string?

String S is a finite sequence of characters

English: { A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z }

Characters are drawn from alphabet Σ, usually assumed finite

Nucleic acid alphabet: { A, C, G, T }

What are some other alphabets we could use?

What is a string… in C++?
char: 1-byte (8-bit) character encoding [ASCII 256]

std::string: uses char alphabet (by default), has significant operation
support

#include <string>
#include <iostream>

int main() {

 char c[] = "Hello World";

 std::string str = "Hello World";

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11

string_main.cpp

Fundamental operations

Math Strings

Fundamental string operations

“How efficient is my algorithm at searching for a given pattern ?”P

“How much memory do I need to allocate for this text file?”

Fundamental string operations

Size of S, |S|: The number of characters in S.

S = “How big?”

|S| =

Join Code: 225

Fundamental string operations

Size of S, |S|: The number of characters in S.

S = “How big?”

|S| = 8

0 1 2 3 4 5 6 7

H o w _ b i g ?

Fundamental string operations

Size of S, |S|: The length of S (in terms of bytes).

#include <string>
#include <iostream>

int main() {
 std::string S = "Is this a string?";
 std::string T = "No, this is Patrick.";

 std::cout << S.length() << std::endl;
 std::cout << T.length() << std::endl;

 return 0;
}

size.cpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14

S.length()

Fundamental string operations

“Is this book about data structures?”

“Is this student enrolled at UIUC?”

Fundamental string operations

S equals T if each character, in order, is the same

S == T

#include <string>
#include <iostream>

int main() {
 std::string S = "Thing 1";
 std::string T = "Thing 1";

 if (S == T){
 std::cout << "S == T" << std::endl;
 } else {
 std::cout << "S != T" << std::endl;
 }
 return 0;
}

equals.cpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Fundamental string operations

S equals T if each character, in order, is the same

S == T

#include <string>
#include <iostream>

int main() {
 char S[] = "Thing 1";
 char T[] = "Thing 1";

 if (S == T){
 std::cout << "S == T" << std::endl;
 } else {
 std::cout << "S != T" << std::endl;
 }
 return 0;
}

char_equals.cpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Join Code: 225

Fundamental string operations

S equals T if each character, in order, is the same

S == T

#include <string>
#include <iostream>

int main() {
 char S[] = "Thing 1";
 char T[] = "Thing 1";

 if (S == T){
 std::cout << "S == T" << std::endl;
 } else {
 std::cout << "S != T" << std::endl;
 }
 return 0;
}

char_equals.cpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Fundamental string operations

GTATGCACGCGATAG TATGTCGCAGTATCT CACCCTATGTCGCAG GAGACGCTGGAGCCG
TAGCATTGCGAGACG GGTATGCACGCGATA TGGAGCCGGAGCACC CGCTGGAGCCGGAGC
TGTCTTTGATTCCTG CGCGATAGCATTGCG GCATTGCGAGACGCT CCTATGTCGCAGTAT
GACGCTGGAGCCGGA GCACCCTATGTCGCA GTATCTGTCTTTGAT CCTCATCCTATTATT
TATCGCACCTACGTT CAATATTCGATCATG GATCACAGGTCTATC ACCCTATTAACCACT

TGCATTTGGTATTTT CGTCTGGGGGGTATG CACGCGATAGCATTG
GTATGCACGCGATAG ACCTACGTTCAATAT TATTTATCGCACCTA CCACTCACGGGAGCT
GCGAGACGCTGGAGC CTATCACCCTATTAA CTGTCTTTGATTCCT ACTCACGGGAGCTCT
CCTACGTTCAATATT GCACCTACGTTCAAT GTCTGGGGGGTATGC AGCCGGAGCACCCTA
GACGCTGGAGCCGGA GCACCCTATGTCGCA GTATCTGTCTTTGAT CCTCATCCTATTATT
TATCGCACCTACGTT CAATATTCGATCATG GATCACAGGTCTATC ACCCTATTAACCACT
CACGGGAGCTCTCCA TGCATTTGGTATTTT CGTCTGGGGGGTATG CACGCGATAGCATTG

CACGGGAGCTCTCCA

Reads

CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTG

Genome

Fundamental string operations

Concatenation of S and T: characters of S followed by characters of T

S = “Beep”

What is the string ST ?

T = “Boop”

What is the string T$S ?

Fundamental string operations

Concatenation of S and T: characters of S followed by characters of T

#include <string>
#include <iostream>

int main() {
 std::string S = "Beep";
 std::string T = "Boop";

 std::cout << S + T << std::endl;
 std::cout << T + S << std::endl;

 std::cout << S + '$' + T << std::endl;
 std::cout << T + '$' + S << std::endl;
}

concat.cpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14

S + T

Fundamental string operations

“Is this book about data structures?”

S: D a t a S t r u c t u r e s

T:

CHAPTER 1

Introduction

1.1 Why Compact Data Structures?

Google’s stated mission, “to organize the world’s information and make it universally
accessible and useful,” could not better capture the immense ambition of modern soci-
ety for gathering all kinds of data and putting them to use to improve our lives. We are
collecting not only huge amounts of data from the physical world (astronomical, cli-
matological, geographical, biological), but also human-generated data (voice, pictures,
music, video, books, news, Web contents, emails, blogs, tweets) and society-based
behavioral data (markets, shopping, traf!c, clicks, Web navigation, likes, friendship
networks).

Our hunger for more and more information is "ooding our lives with data. Tech-
nology is improving and our ability to store data is growing fast, but the data we are
collecting also grow fast – in many cases faster than our storage capacities. While our
ability to store the data in secondary or perhaps tertiary storage does not yet seem to
be compromised, performing the desired processing of these data in the main memory
of computers is becoming more and more dif!cult. Since accessing a datum in main
memory is about 105 times faster than on disk, operating in main memory is crucial for
carrying out many data-processing applications.

In many cases, the problem is not so much the size of the actual data, but that
of the data structures that must be built on the data in order to ef!ciently carry
out the desired processing or queries. In some cases the data structures are one or
two orders of magnitude larger than the data! For example, the DNA of a human
genome, of about 3.3 billion bases, requires slightly less than 800 megabytes if we
use only 2 bits per base (A, C, G, T), which !ts in the main memory of any desk-
top PC. However, the suf!x tree, a powerful data structure used to ef!ciently perform
sequence analysis on the genome, requires at least 10 bytes per base, that is, more than
30 gigabytes.

The main techniques to cope with the growing size of data over recent years can be
classi!ed into three families:

1

�($)�&��+)����,�!#��#���� **')���---���$�(!����&(���&(��*�($)�� **')����&!�&(��������
�����
��	�������
����
�&-%#&������(&$� **')���---���$�(!����&(���&(����%!,�()!*.�&���##!%&!)��*��(��%����� �$'�!�%��!�(�(.��&%��
��+��������*��
�
������)+�"��*�*&�* ����$�(!�����&(�

Fundamental string operations
S is a substring of T if there exists (possibly empty) strings u and v
such that T = uSv

A substring is a sequence of characters (a string) contained within
another string

S: p e p p e r

T: I _ l i k e _ p e p p e r o n i _ p i z z a

Fundamental string operations

A substring of S is a string occurring inside S

#include <string>
#include <iostream>

int main() {
 std::string T = “Hello my name is ";

 std::cout << T.substr(1,4) << std::endl;

 return 0;
}

substring.cpp
1
2
3
4
5
6
7
8
9

10

S.substr(size_t pos, size_t len)

Fundamental string operations

A substring of S is a string occurring inside S

#include <string>
#include <iostream>

int main() {
 std::string T = “Hello my name is ";

 std::cout << T.substr(1,4) << std::endl;

 return 0;
}

substring.cpp
1
2
3
4
5
6
7
8
9

10

S.substr(size_t pos, size_t len)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
H e l l o _ m y _ n a m e _ i s _

Fundamental string operations

S is a prefix of T if there exists a string v such that T = Sv

A prefix is a substring T=uSv where u=“”

T: G T T A T A G C T G A T
G T T A T A G C T G A T

S v

Fundamental string operations

S is a prefix of T if there exists a string v such that T = Sv
G T T A T A G C T G A T
G T T A T A G C T G A T
G T T A T A G C T G A
G T T A T A G C T G
G T T A T A G C T
G T T A T A G C
G T T A T A G
G T T A T A
G T T A T
G T T A
G T T
G T
G

T:

Fundamental string operations

S is a prefix of T if there exists a string v such that T = Sv
G T T A T A G C T G A T
G T T A T A G C T G A T
G T T A T A G C T G A
G T T A T A G C T G
G T T A T A G C T
G T T A T A G C
G T T A T A G
G T T A T A
G T T A T
G T T A
G T T
G T
G

T:

Fundamental string operations

S is a prefix of T if there exists a string v such that T = Sv

P a t t e r

m a t c h i n g

P a t r i c k

T: P a t t e r n m a t c h i n g
Join Code: 225

Fundamental string operations

S is a prefix of T if there exists a string v such that T = Sv

P a t t e r

m a t c h i n g

P a t r i c k

T: P a t t e r n m a t c h i n g

Fundamental string operations

S is a suffix of T if there exists a string u such that T = uS

A suffix is a substring T=uSv where v=“”

T: G T T A T A G C T G A T
G T T A T A G C T G A T

Su

Fundamental string operations

S is a suffix of T if there exists a string u such that T = uS
G T T A T A G C T G A T
G T T A T A G C T G A T
 T T A T A G C T G A T
 T A T A G C T G A T
 A T A G C T G A T
 T A G C T G A T
 A G C T G A T
 G C T G A T
 C T G A T
 T G A T
 G A T
 A T
 T

T:

Fundamental string operations

S is a suffix of T if there exists a string u such that T = uS
G T T A T A G C T G A T
G T T A T A G C T G A T
 T T A T A G C T G A T
 T A T A G C T G A T
 A T A G C T G A T
 T A G C T G A T
 A G C T G A T
 G C T G A T
 C T G A T
 T G A T
 G A T
 A T
 T

T:

Fundamental string operations

S is a suffix of T if there exists a string u such that T = uS

i n g

t e r n

r i n g

T: P a t t e r n m a t c h i n g
Join Code: 225

Fundamental string operations

S is a suffix of T if there exists a string u such that T = uS

i n g

t e r n

r i n g

T: P a t t e r n m a t c h i n g

Fundamental string operations

Equals, S == T

Concatenation, ST

Substring, uSv

S == T

S + T

S.substr(pos, len)

Size, |S| S.length()

Exact Pattern Matching

Pattern, P Text, T

Find instances of P in T

Exact Pattern Matching

Pattern, P Text, T

Find instances of P in T

‘instances’: An exact, full length copy

Exact Pattern Matching
Find places where pattern P occurs as a substring of text T. Each
such place is an occurrence or match.

There would have been a time for such a wordT:
P: word

Exact Pattern Matching
Find places where pattern P occurs as a substring of text T. Each
such place is an occurrence or match.

There would have been a time for such a wordT:
P: word

word word

Exact Pattern Matching
Find places where pattern P occurs as a substring of text T. Each
such place is an occurrence or match.

There would have been a time for such a wordT:
P: word

word wordAlignment 1: Alignment 2:

Alignment: a way of putting P’s characters opposite T’s. May or
may not correspond to a match.

Exact Pattern Matching
Find places where pattern P occurs as a substring of text T. Each
such place is an occurrence or match.

There would have been a time for such a wordT:
P: word

Match!Not a match!

word wordAlignment 1: Alignment 2:

Alignment: a way of putting P’s characters opposite T’s. May or
may not correspond to a match.

Exact Pattern Matching

What’s a simple algorithm for exact matching?

There would have been a time for such a wordT:
P: word

Exact Pattern Matching

What’s a simple algorithm for exact matching?

There would have been a time for such a wordT:
P: word

Try all possible alignments. For each, check if it matches. This
is the naïve algorithm.

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
One
occurrence

Assignment 1: a_naive
Learning Objective:

Conceptualize exact pattern matching w/ naïve search

Demonstrate understanding of fundamental operations

Think about as you code: is naïve search a good solution?

End-of-class brainstorm

How can we improve the naïve algorithm?

End-of-class brainstorm

How can we improve the naïve algorithm?

… if you have infinite space?

End-of-class brainstorm

How can we improve the naïve algorithm?

… if I tell you the pattern ahead of time?

End-of-class brainstorm

How can we improve the naïve algorithm?

… if I tell you the text ahead of time?

End-of-class brainstorm

How can we improve the naïve algorithm?

… if you have infinite space?

… if I tell you the pattern ahead of time?

… if I tell you the text ahead of time?

