Data Structures and Algorithms MinHash Sketch

CS 225 Brad Solomon April 24, 2024

Department of Computer Science

Learning Objectives

Finish discussing bloom filters

Introduce the concept of cardinality and cardinality estimation

Demonstrate the relationship between cardinality and similarity

Introduce the MinHash Sketch for set similarity detection

Bloom Filters

A probabilistic data structure storing a set of values

 $h_{\{1,2,3,...,k\}}$

Has three key properties:

k, number of hash functions

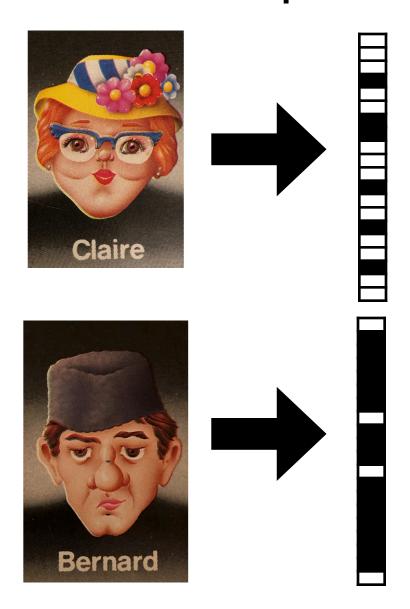
n, expected number of insertions

m, filter size in bits

Expected false positive rate: $\left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k \approx \left(1 - e^{\frac{-nk}{m}}\right)^k$

Optimal accuracy when: $k^* = \ln 2 \cdot \frac{m}{n}$

The hidden problem with (most) sketches...



Cardinality

Cardinality is a measure of how many unique items are in a set

	2	
•	4	

Applied Cardinalities

Cardinalities

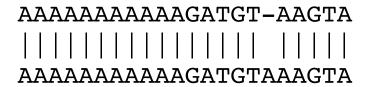
$$|A|$$
 $|B|$
 $|A \cup B|$
 $|A \cap B|$

Set similarities

$$O = \frac{|A \cap B|}{\min(|A|, |B|)}$$

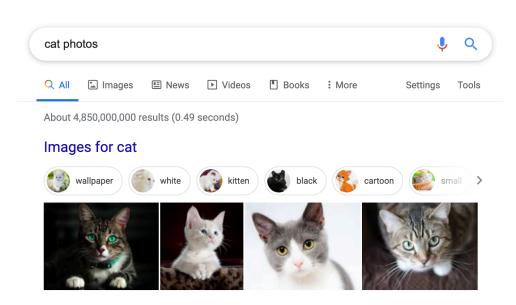
$$J = \frac{|A \cap B|}{|A \cup B|}$$

Real-world Meaning



Cardinality

Sometimes its not possible or realistic to count all objects!



Estimate: 60 billion — 130 trillion

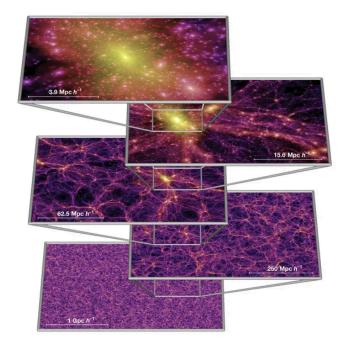


Image: https://doi.org/10.1038/nature03597

5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
5598
8499
8970
3921
8575
4859
4960
42
6901
4336
9228
3317
399
6925
2660
2314

Applied Cardinalities

$$k^* = \ln 2 \cdot \frac{m}{n}$$

 $\left|k^* = \ln 2 \cdot \frac{m}{n}\right|$ Given any two values, we can optimize the third

$$n = 100$$
 items $k = 3$ hashes

$$k=3$$
 hashes

$$m =$$

$$m = 100$$
 bits $n = 20$ items

$$n = 20$$
 items

$$k =$$

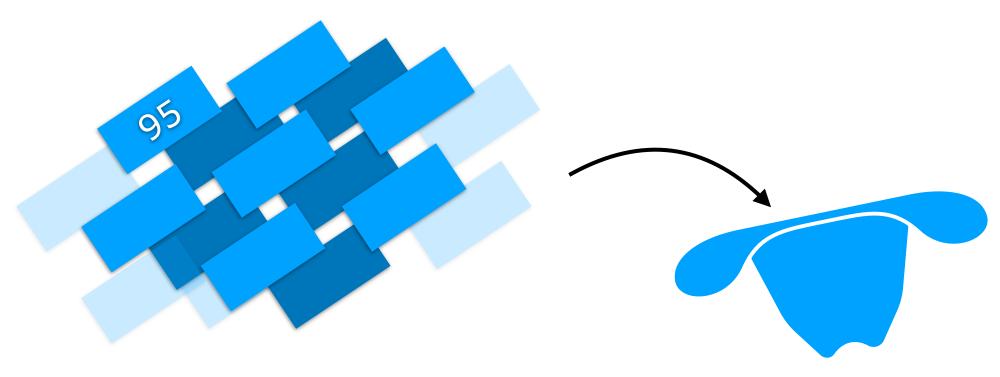
$$m = 100$$
 bits $k = 2$ items $n = 100$

$$k=2$$
 items

$$n =$$

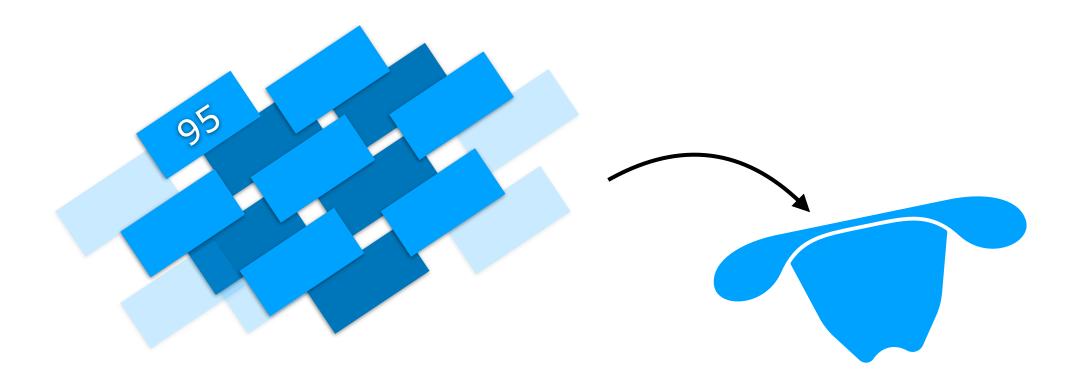
Imagine I fill a hat with numbered cards and draw one card out at random.

If I told you the value of the card was 95, what have we learned?

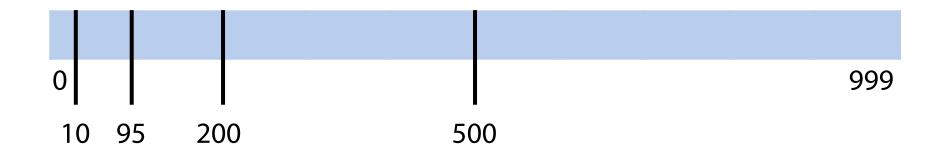


Imagine I fill a hat with a random subset of numbered cards from 0 to 999

If I told you that the **minimum** value was 95, what have we learned?



Imagine we have multiple sets (multiple minimums).



Let min = 95. Can we estimate N, the cardinality of the set?

Let min = 95. Can we estimate N, the cardinality of the set?

Claim:
$$95 \approx \frac{1000}{(N+1)}$$

Let min = 95. Can we estimate N, the cardinality of the set?

Conceptually: If we scatter N points randomly across the interval, we end up with N+1 partitions, each about 1000/(N+1) long

Assuming our first 'partition' is about average: $95 \approx 1000/(N+1)$ $N+1 \approx 10.5$

 $N \approx 9.5$

Imagine we have a SUHA hash h over a range m.

Inserting a new value is equivalent to adding a card to our hat!

Tracking only the minimum value can let us estimate the cardinality!

h(x)

0

m-1

Imagine we have a SUHA hash h over a range m.

Inserting a new value is equivalent to adding a card to our hat!

Tracking only the minimum value can let us estimate the cardinality!

To make the math work out, lets normalize our hash...

$$h'(x) = h(x) / (m-1)$$

0

1

Let $M = min(X_1, X_2, ..., X_N)$ where each $X_i \in [0, 1]$ is an uniform independent random variable

Claim:
$$\mathbf{E}[M] = \frac{1}{N+1}$$

0

Consider an N + 1 draw:

$$X_1 X_2 X_3 \cdots X_N X_{N+1}$$

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} can end up in one of two ranges:

Consider an N + 1 draw:

$$X_1$$
 X_2 X_3 ... X_N X_{N+1}

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} can end up in one of two ranges:

 X_{N+1} will be the new minimum with probability M

Consider an N + 1 draw:

$$X_1 \mid X_2 \mid X_3 \mid \cdots \mid X_N \mid X_{N+1}$$

$$M = \min_{1 < i < N} X_i$$

 X_{N+1} can end up in one of two ranges:

 X_{N+1} will be the new minimum with probability M

 X_{N+1} will not change minimum with probability 1-M



Consider an N + 1 draw:

$$X_1$$
 X_2 X_3 \cdots X_N X_{N+1}

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} will be the new minimum with probability M

By definition of SUHA, X_{N+1} has a $\frac{1}{N+1}$ chance of being smallest item

Consider an N + 1 draw:

$$X_1$$
 X_2 X_3 ... X_N X_{N+1}

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} will be the new minimum with probability M

By definition of SUHA, X_{N+1} has a $\frac{1}{N+1}$ chance of being smallest item

Thus,
$$\mathbf{E}[M] = \frac{1}{N+1}$$

1

Claim:
$$E[M] = \frac{1}{N+1}$$
 $N \approx \frac{1}{M} - 1$

$$N \approx \frac{1}{M} - 1$$

Attempt 1

71 0.952 0.923	0.771	0.328	0.962
----------------	-------	-------	-------

Attempt 2

0.253	0.839	0.327	0.655	0.491
-------	-------	-------	-------	-------

Attempt 3

0.134	0.580	0.364	0.743	0.931
-------	-------	-------	-------	-------

The minimum hash is a valid sketch of a dataset but can we do better?

0

Claim: Taking the k^{th} -smallest hash value is a better sketch!

Claim:
$$\mathbf{E}[\mathbf{M_k}] = \frac{k}{N+1}$$

$$0 \quad M_1 \quad M_2 \quad M_3 \quad \dots \quad M_k$$

Claim: Taking the k^{th} -smallest hash value is a better sketch!

Claim:
$$\frac{\mathbf{E}[M_k]}{k} = \frac{1}{N+1}$$
$$= \left[\mathbf{E}[M_1] + (\mathbf{E}[M_2] - \mathbf{E}[M_1]) + \dots + (\mathbf{E}[M_k] - \mathbf{E}[M_{k-1}]) \right] \cdot \frac{1}{k}$$

$$M_1$$

 M_2

 M_3 ..

 M_{k-1}

 M_k

value (KMV)

$$\frac{1}{N+1} = \frac{\mathbf{E}[M_k]}{k}$$

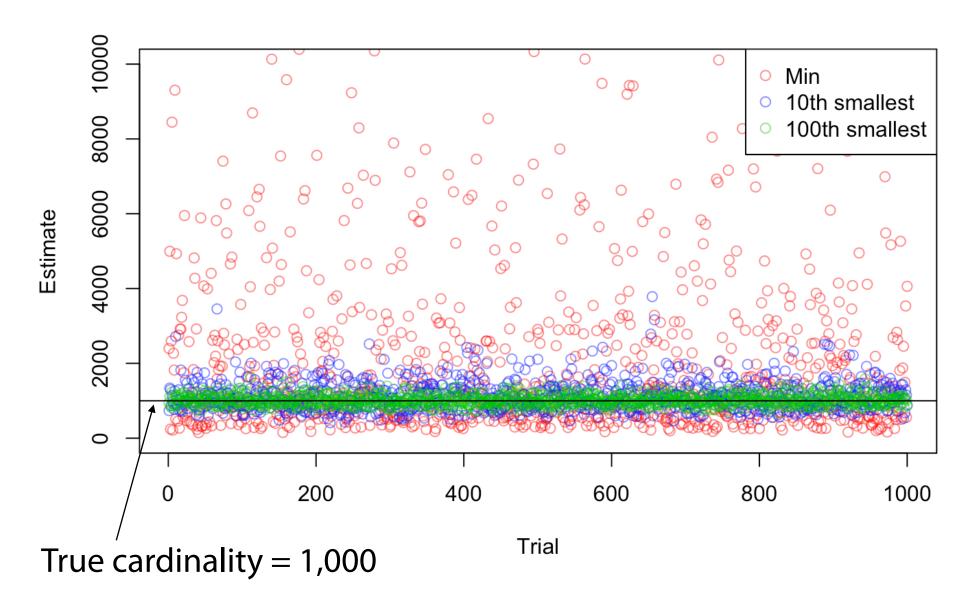
$$= \left[\mathbf{E}[M_1] + (\mathbf{E}[M_2] - \mathbf{E}[M_1]) + \dots + (\mathbf{E}[M_k] - \mathbf{E}[M_{k-1}])\right] \cdot \frac{1}{k}$$

$$0 \qquad 1$$

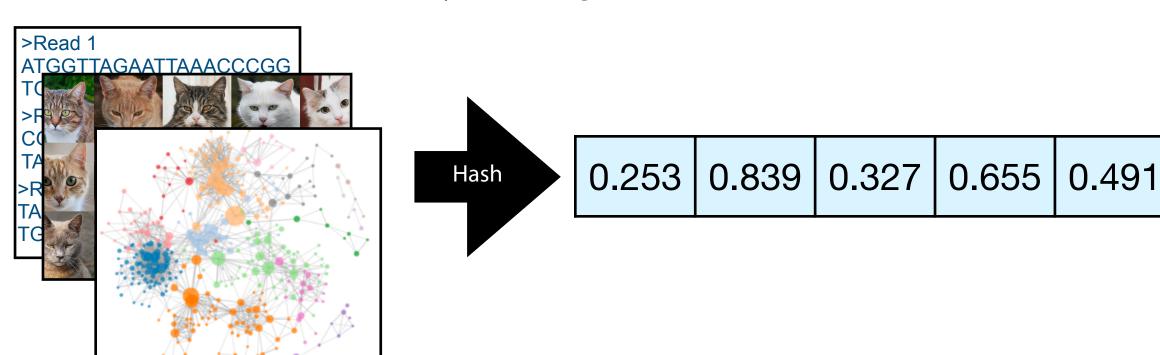
$$M_1 \quad M_2 \quad M_3 \qquad M_{k-1} M_k$$

$$k^{th} \text{ minimum} \qquad \text{Averages } k \text{ ostimates for } \frac{1}{k}$$

Averages k estimates for $\frac{1}{N+1}$



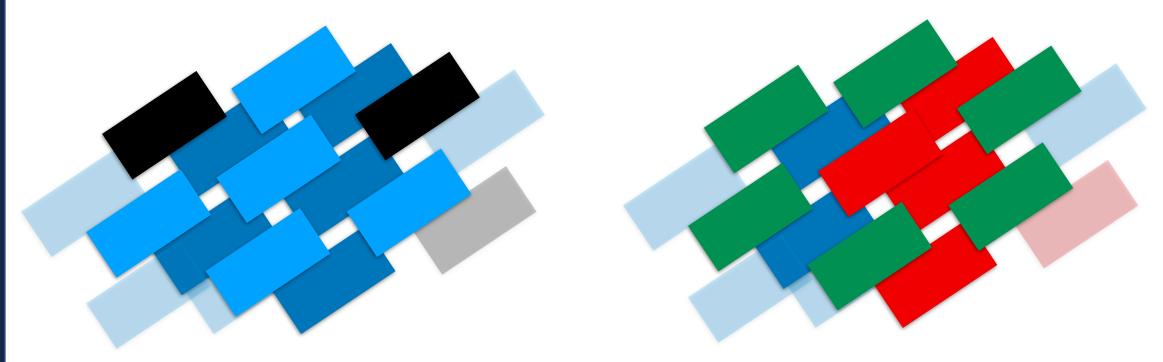
Given any dataset and a SUHA hash function, we can **estimate the number of unique items** by tracking the **k-th minimum hash value**.



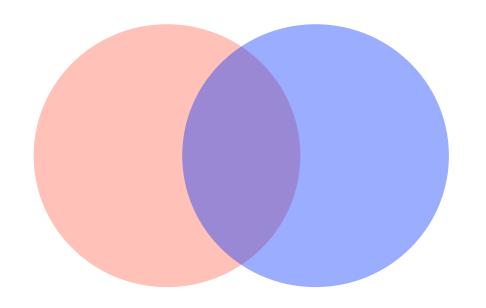
MinHash Sketch

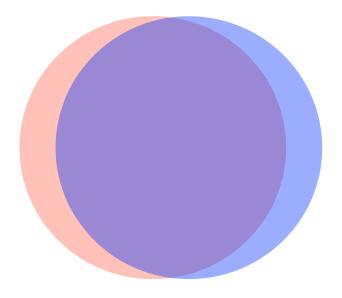
The **k-th minimum value sketch** is built by tracking k minima but only uses one value (the k-th minima) to get **cardinality!**

We can extend this approach into a full **MinHash sketch** that can also estimate **set similarities**.

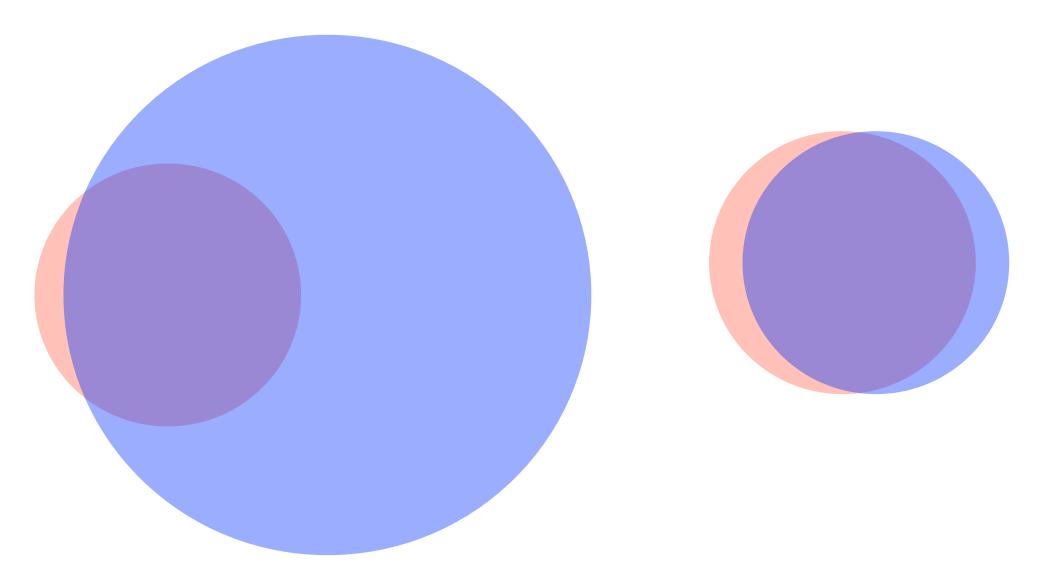


How can we describe how *similar* two sets are?

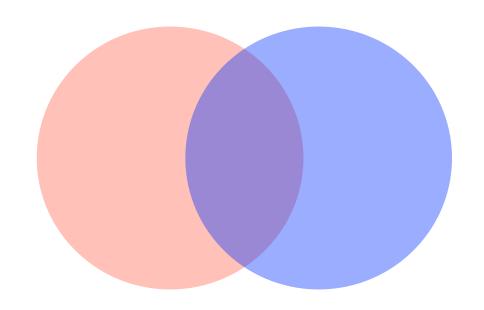




How can we describe how *similar* two sets are?

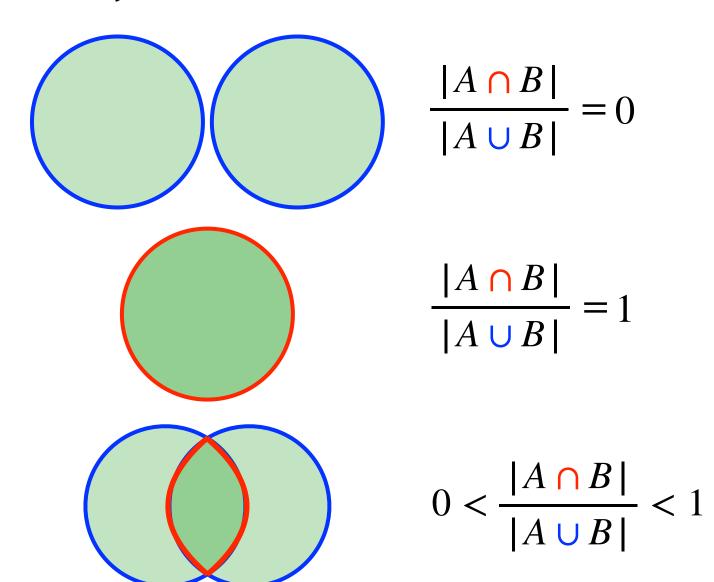


To measure **similarity** of A & B, we need both a measure of how similar the sets are but also the total size of both sets.



$$J = \frac{|A \cap B|}{|A \cup B|}$$

J is the **Jaccard coefficient**



Similarity Sketches

Imagine we have two datasets represented by their kth minimum values

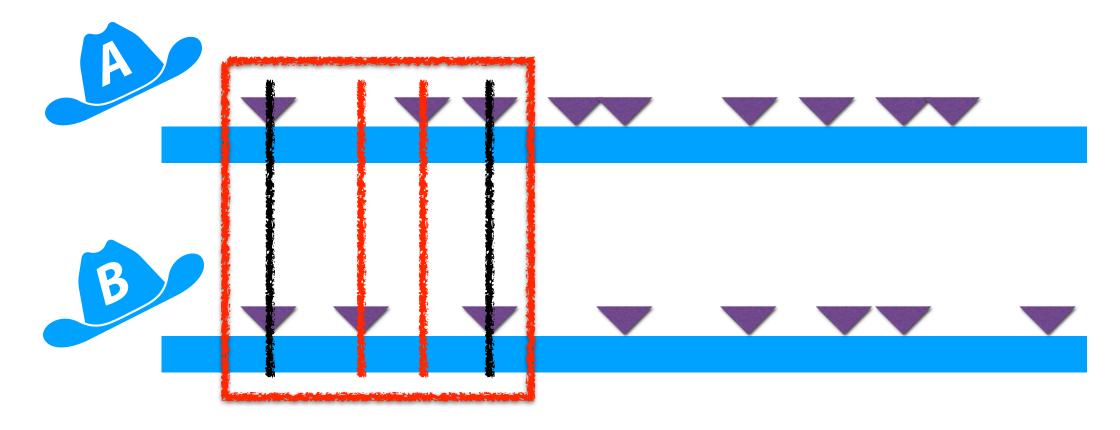


Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. **Mash Screen:** high-throughput sequence containment estimation for genome discovery. *Genome Biol* 20, 232 (2019)

Similarity Sketches

Claim: Under SUHA, comparing all k minima can estimate set similarity!

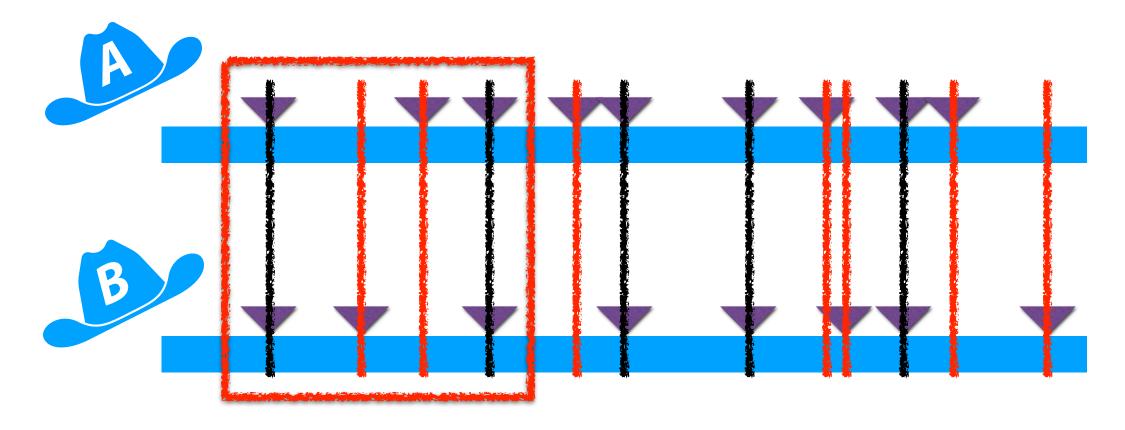


Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. **Mash Screen:** high-throughput sequence containment estimation for genome discovery. *Genome Biol* 20, 232 (2019)

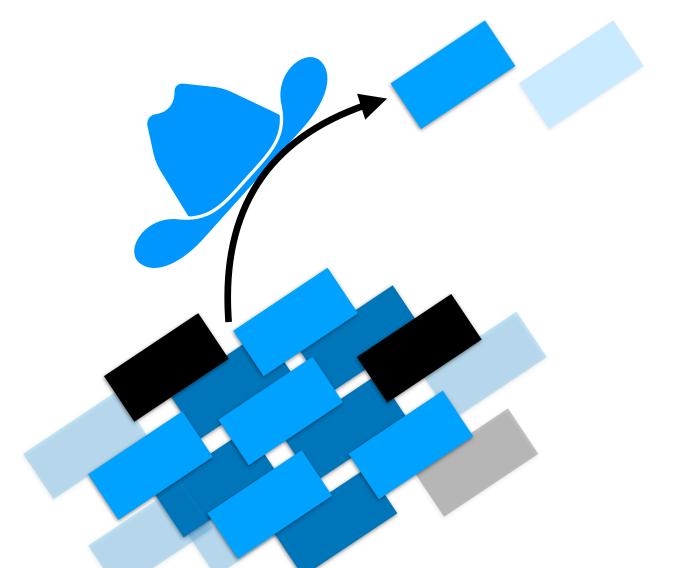
MinHash Construction

A MinHash sketch has three required inputs:

1.

2.

3



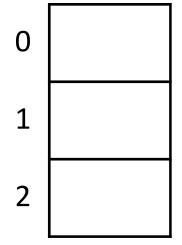
MinHash Construction

$$h(x) = x \% 7$$

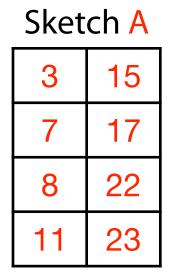
$$k = 3$$

Algorithm is trivial:

- 1. Hash each item
- 2. Keep the k-minimum values in memory (Ignore collisions / duplicates)



Given sets A and B sampled uniformly from [0, 100], store the bottom-8 **MinHash:**



2	9
3	11
6	17
7	23

Sketch B

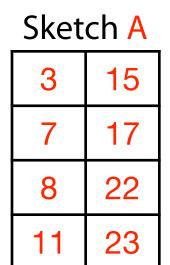
We want to estimate the Jaccard Coefficient: $\frac{|A \cup B|}{|A \cap B|}$

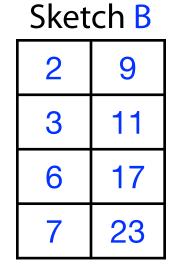
Sketch A	
3	15
7	17
8	22
11	23

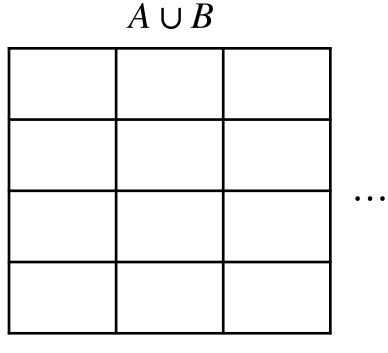
2	9
3	11
6	17
7	23

Sketch B

What do we know about $A \cup B$?

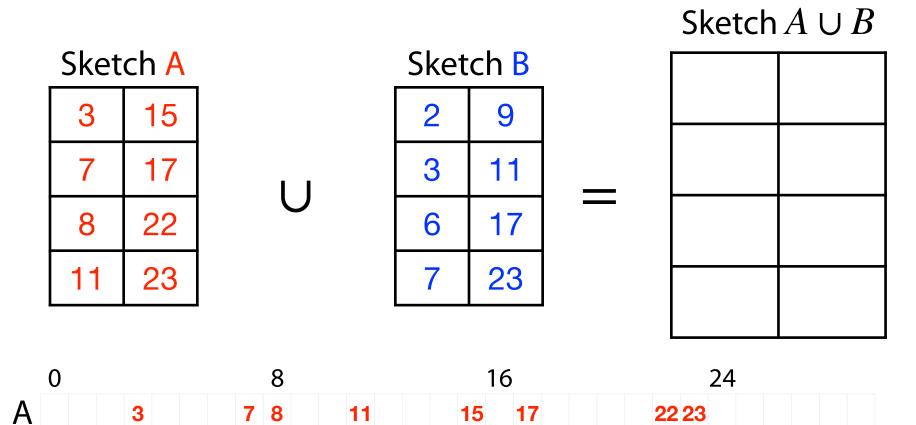






В

We dont $know A \cup B$, but we can make a sketch!



17

23

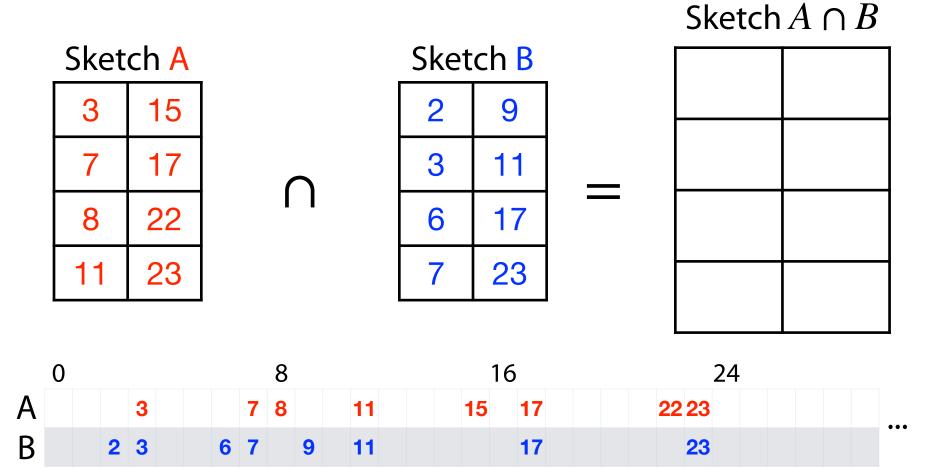
11

Estimate $|A \cup B|$ (the cardinality of the union) from sketch:

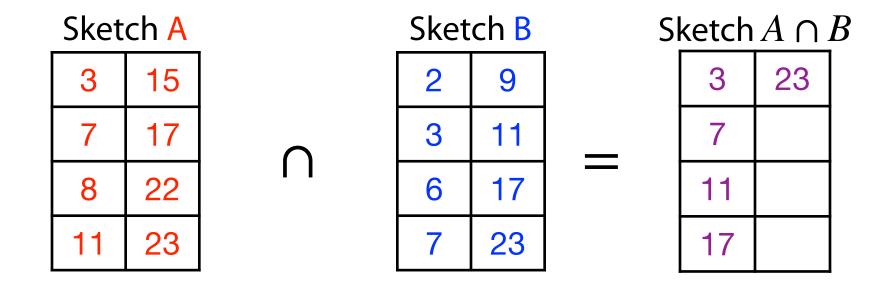
Sketch $A \cup B$ Our sets sampled from [0, 100].

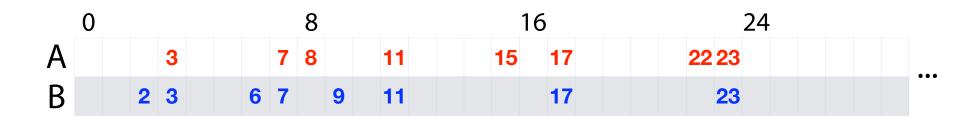
	_
2	8
3	9
6	11
7	15

Can we build a 8-Minhash of $A \cap B$?



Not guaranteed to be able to get a full sketch of the intersection!



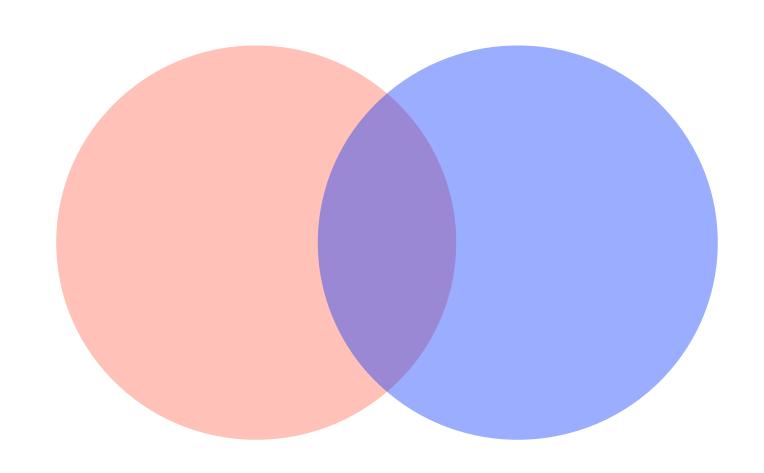


Using MinHash sketches, we can estimate |A|, |B|, and $|A \cup B|$

Is this enough to estimate the Jaccard?

Inclusion-Exclusion Principle

$$|A \cap B| =$$



MinHash Indirect Jaccard Estimation

$$\frac{|A| \cap |B|}{|A| \cup |B|} = \frac{|A| + |B| - |A \cup B|}{|A \cup B|}$$

k = 8 MinHash sketches Our sets sampled from [0, 100]

Sketch A

	_
3	15
7	17
8	22
11	23

Sketch B

SKELCIT	
2	9
3	11
6	17
7	23

Sketch of

$$A \cup B$$

 2
 8

 3
 9

 6
 11

 7
 15

$$= \frac{(800/23-1) + (800/23-1) - (800/15-1)}{800/15-1}$$

$$=\frac{34.782 + 34.782 - 53.333 - 1}{53.333 - 1} \approx 0.29$$

MinHash Direct Jaccard Estimate

We can also estimate cardinality directly using our sketches!

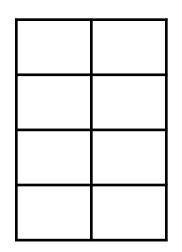
Sketch A

3	15
7	17
8	22
11	23

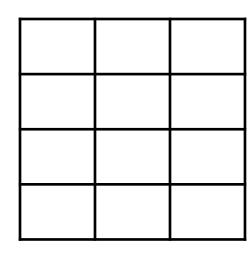
Sketch B

2	9
3	11
6	17
7	23

Intersection

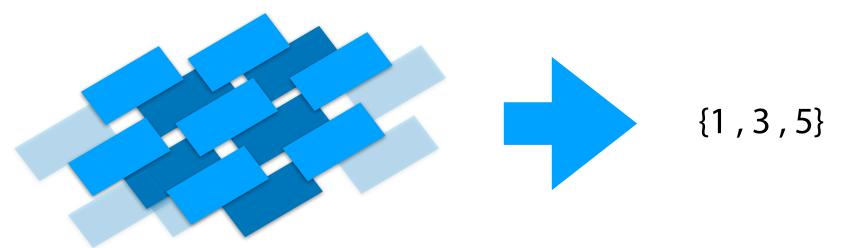


Union



MinHash Sketch

We can convert any hashable dataset into a MinHash sketch



We lose our original dataset, but we can still estimate two things:

1.

2.

Alternative MinHash Sketch Approaches

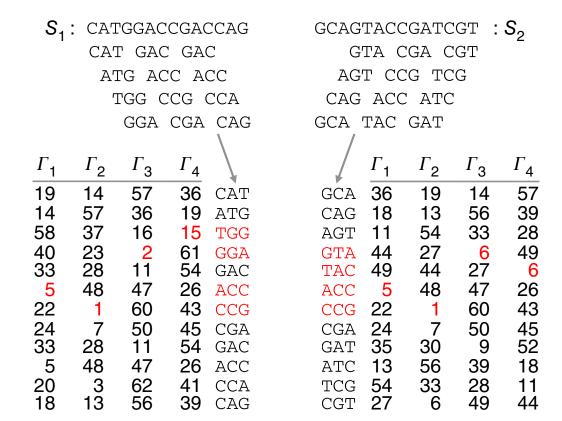
Rather than use one single hashes and take bottom-k, we can also use k hashes — if you have access to that many independent hashes!

1) Sequence decomposed into **kmers**

 S_1 : CATGGACCGACCAG CAT GAC GAC ATG ACC ACC

GCAGTACCGATCGT : S_2 GTA CGA CGT AGT CCG TCG TGG CCG CCA CAG ACC ATC GGA CGA CAG GCA TAC GAT

- 1) Sequence decomposed into **kmers**
- 2) Multiple hash functions (Γ) map kmers to values.



1) Sequence decomposed into **kmers**

2) Multiple hash functions (
$$\Gamma$$
) map kmers to values.

3) The smallest values for each hash function is chosen

$$\left[\frac{5}{5}, \frac{1}{1}, 6, 6 \right]$$

Sketch $\left(S_2 \right)$

57

39

28

49 6

26

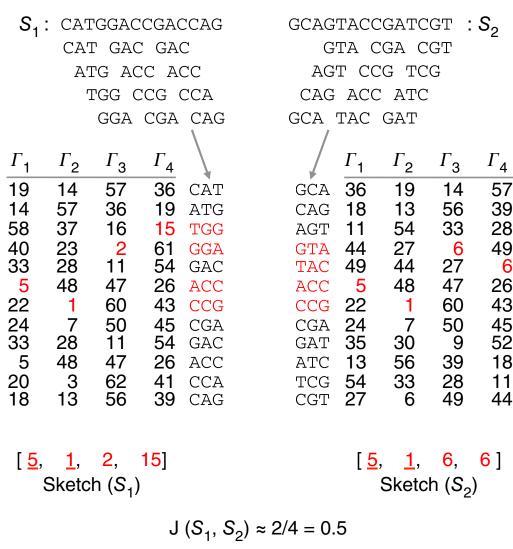
45 52

18

11

- 1) Sequence decomposed into **kmers**
- 2) Multiple hash functions (Γ) map kmers to values.

- 3) The smallest values for each hash function is chosen
- 4) The Jaccard similarity can be estimated by the overlap in the **Min**imum **Hash**es (**MinHash**)



$$J(S_1, S_2) \approx 2/4 = 0.5$$

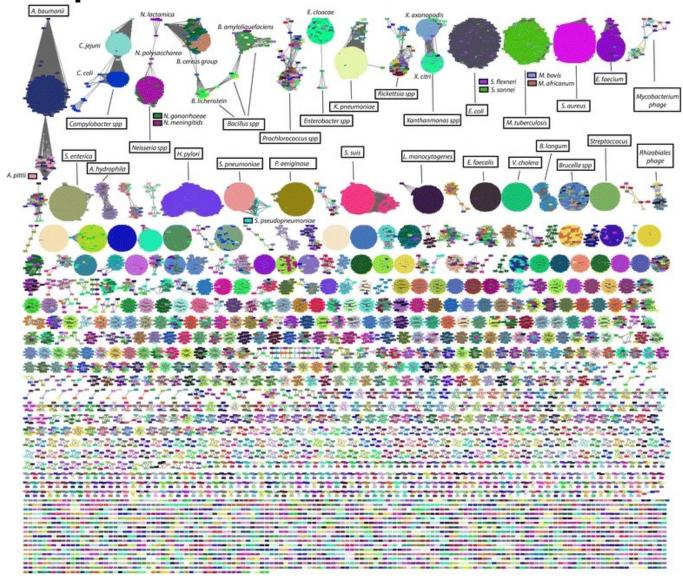
$$S_1: CATGGACCGACCAG$$

$$| | | | | | |$$

$$S_2: GCAGTACCGATCGT$$

Assembling large genomes with single-molecule sequencing and locality-sensitive hashing Berlin et al (2015) *Nature Biotechnology*

MinHash in practice



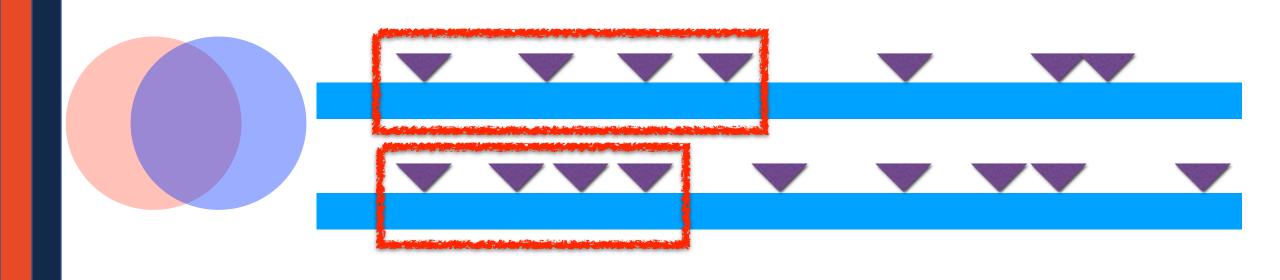
Mash: fast genome and metagenome distance estimation using MinHash Ondov et al (2016) *Genome Biology*

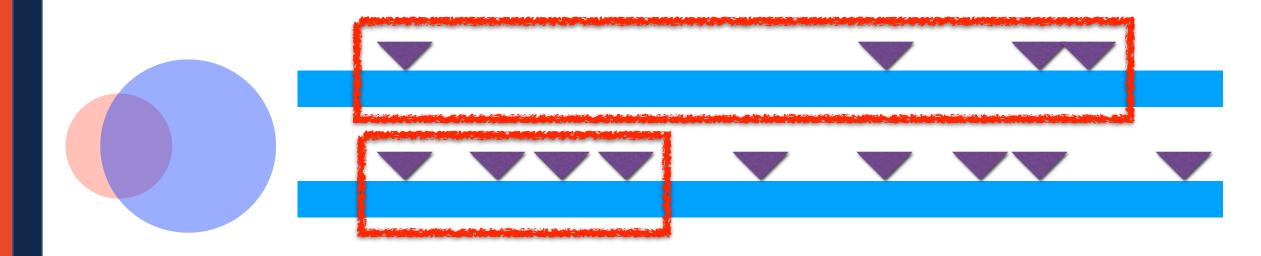
Alternative MinHash Sketch Approaches

What if I have a dataset which is **much** larger than another?

```
S_1 = \{ 1, 3, 40, 59, 82, 101 \}

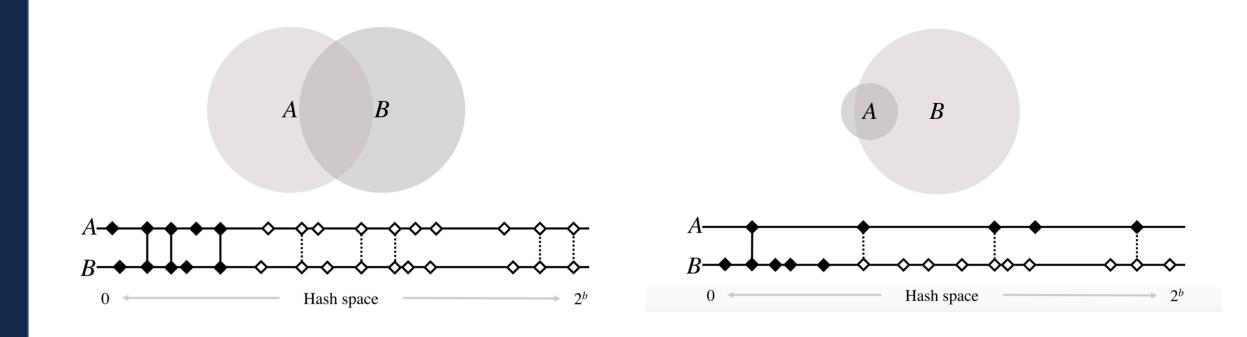
S_2 = \{ 1, 2, 3, 4, 5, 6, 7, ... 59, 82, 101, ... \}
```





Alternative MinHash sketches

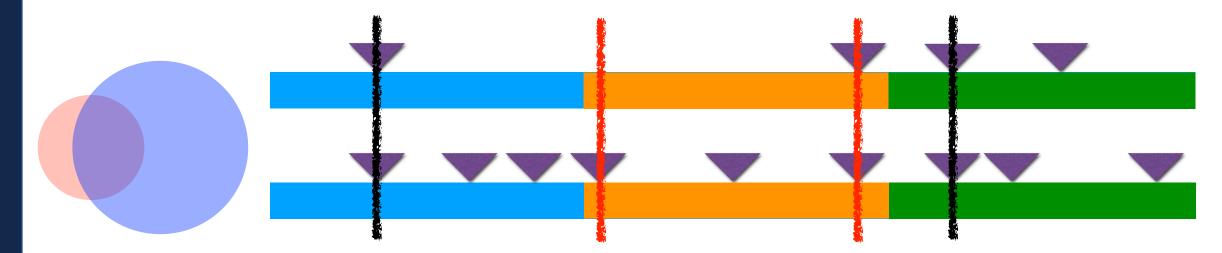
Bottom-k minhash has low accuracy if the cardinality of sets are skewed



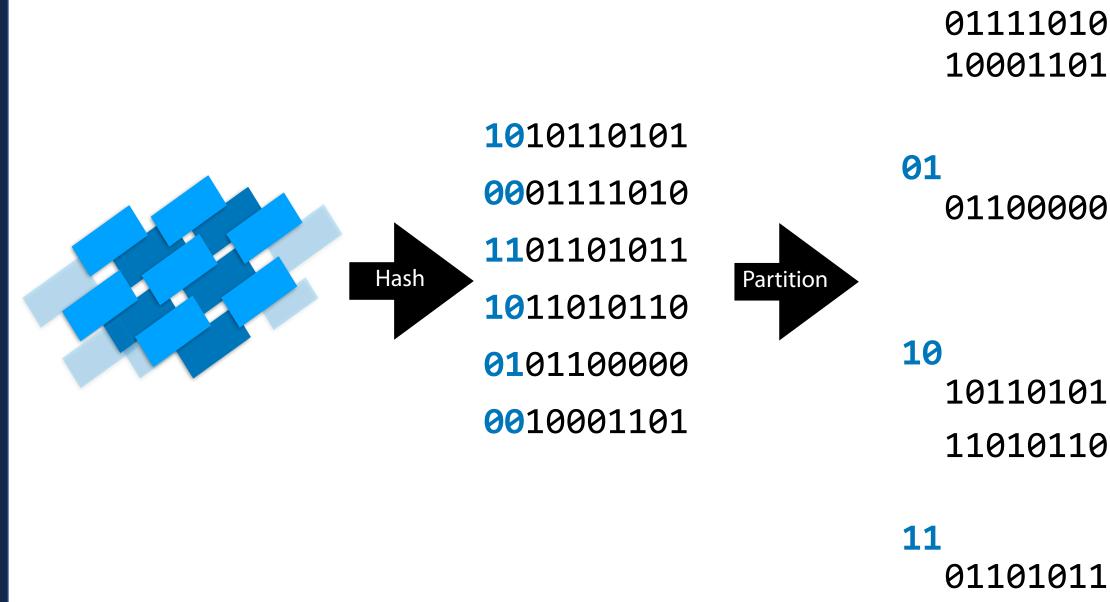
Ondov, Brian D., Gabriel J. Starrett, Anna Sappington, Aleksandra Kostic, Sergey Koren, Christopher B. Buck, and Adam M. Phillippy. **Mash Screen: High-throughput sequence containment estimation for genome discovery**. *Genome biology* 20.1 (2019): 1-13.

Alternative MinHash Sketch Approaches

If there is a large cardinality difference, use k-partitions!



K-Partition Minhash



00

Probabilistic Data Structures

Probabilistic data structures trade accuracy for efficiency

Most can maintain surprisingly good accuracy

"Cheat" Big O limitations on conventional data analysis