Data Structures and Algorithms Bloom Filters

CS 225
Brad Solomon
April 19, 2024

Data Structures Review

What method would you use to build a search index on a collection of objects?

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of objects in a memory-constrained environment?

Constrained by Big Data (Large N)

| cat photos | Y | Q |
| :--- | :--- | :--- | :--- | :--- |
| Q All | | |

About $4,850,000,000$ results (0.49 seconds)
Images for cat

Google Index Estimate: >60 billion webpages
Google Universe Estimate (2013): >130 trillion webpages

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of objects in a memory-constrained environment?

Constrained by Big Data (Large N)

WNA
 European Nucleotide Archive

Sequence Read Archive Size: >60 petabases (105)

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of objects in a memory-constrained environment?

Constrained by Big Data (Large N)

sky Survey Projects	Data Volume
DPOSS (The Palomar Digital Sky Survey)	3 TB
2MASS (The Two Micron All-Sky Survey)	10 TB
GBT (Green Bank Telescope)	20 PB
GALEX (The Galaxy Evolution Explorer)	30 TB
SDSS (The Sloan Digital Sky Survey)	40 TB
SkyMapper Southern Sky Survey	500 TB
PanSTARRS (The Panoramic Survey Telescope and Rapid Response System)	~ 40 PB expected
LSST (The Large Synoptic Survey Telescope)	~ 200 PB expected
SKA (The Square Kilometer Array)	$\sim 4.6 \mathrm{~EB}$ expected
\quad Table: http://doi.org/10.5334/dsj-2015-011	

[^0]
Memory-Constrained Data Structures

What method would you use to build a search index on a collection of objects in a memory-constrained environment?

Constrained by resource limitations

(Estimates are Time x 1 billion courtesy of https://gist.github.com/hellerbarde/2843375)

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of objects in a memory-constrained environment?

Reducing storage costs

1) Throw out information that isn't needed
2) Compress the dataset

Reducing a hash table

What can we remove from a hash table?

Reducing a hash table

What can we remove from a hash table?

Take away values

Reducing a hash table

$$
H\left(k_{1}\right)=i_{1}
$$

What can we remove from a hash table?

Take away values and keys

Reducing a hash table

What can we remove from a hash table?

Take away values and keys

Bloom Filter: Insertion
$S=\{16,8,4,13,29,11,22\}$
$h(k)=k \% 7$

0	0
1	0
2	0
3	0
4	0
5	0
6	0

Bloom Filter: Insertion

An item is inserted into a bloom filter by hashing and then setting the hash-valued bit to 1

If the bit was already one, it stays 1

Bloom Filter: Deletion

$$
\begin{aligned}
& S=\{16,8,4,13,29,11,22\} \quad \text { delete (13) } \\
& h(k)=k \% 7 \\
& \text { _delete(29) }
\end{aligned}
$$

0	0
1	1
2	1
3	0
4	1
5	0
6	1

Bloom Filter: Search
$S=\{16,8,4,13,29,11,22\} \quad$ find (16)
$h(k)=k \% 7$

0	0
1	1
2	1
3	0
4	1
5	0
6	1

_find(20)
find(3)

Bloom Filter: Search

The bloom filter is a probabilistic data structure!

If the value in the $B F$ is 0 :

If the value in the $B F$ is 1 :

Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious
True Positive:

False Positive:

False Negative:

True Negative:

Imagine we have a bloom filter that stores malicious sites...

$$
\text { Bit Value }=1 \quad \text { Bit Value }=0
$$

Probabilistic Accuracy: One-sided error

Probabilistic Accuracy: One-sided error

Bloom Filter: Repeated Trials

Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials

Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials

Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials

Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials

$$
\begin{aligned}
& h_{\{1,2,3, \ldots, k\}}(y)
\end{aligned}
$$

Bloom Filter: Repeated Trials

Bloom Filter: Repeated Trials

Bloom Filter: Repeated Trials

Using repeated trials, even a very bad filter can still have a very low FPR!
If we have k bloom filter, each with a FPR p, what is the likelihood that all filters return the value ' 1 ' for an item we didn't insert?

Bloom Filter: Repeated Trials

But doesn't this hurt our storage costs by storing k separate filters?

Bloom Filter: Repeated Trials

Rather than use a new filter for each hash, one filter can use k hashes

$$
\begin{aligned}
& S=\{6,8,4\} \\
& h_{1}(x)=x \% 10 \quad h_{2}(x)=2 x \% 10 \quad h_{3}(x)=(5+3 x) \% 10
\end{aligned}
$$

Bloom Filter: Repeated Trials

Rather than use a new filter for each hash, one filter can use k hashes


```
_find(1)
_find(16)
```


Bloom Filter

A probabilistic data structure storing a set of values $H=\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$

Built from a bit vector of length m and k hash functions

Insert / Find runs in:

Delete is not possible (yet)!

0
0
1
0
0
1
0
1
0
0

Bloom Filter: Error Rate
Given bit vector of size m and k SUHA hash function

What is our expected FPR after n objects are inserted?

Bloom Filter: Error Rate

Given bit vector of size m and 1 SUHA hash function
What's the probability a specific bucket is 1 after one object is inserted?

Same probability given k SUHA hash function?

Bloom Filter: Error Rate

Given bit vector of size m and k SUHA hash function

Probability a specific bucket is 0 after one object is inserted?

After n objects are inserted?

Bloom Filter: Error Rate

Given bit vector of size m and k SUHA hash function
What's the probability a specific bucket is 1 after n objects are inserted?

Bloom Filter: Error Rate

Given bit vector of size m and k SUHA hash function

What is our expected FPR after n objects are inserted?

The probability my bit is 1 after n objects inserted

$$
\left(1-\left(1-\frac{1}{m}\right)^{n k}\right)^{k}
$$

The number of [assumed independent] trials

Bloom Filter: Error Rate
Vector of size m, k SUHA hash function, and n objects
To minimize the FPR, do we prefer...

$$
\begin{aligned}
& \text { (A) large } k \quad \text { (B) small } k \\
& \left(1-\left(1-\frac{1}{m}\right)^{n k}\right)^{k}
\end{aligned}
$$

[^0]: Image: https://doi.org/10.1038/nature03597

