
Department of Computer Science

Data Structures and Algorithms

CS 225
Carl Evans April 12, 2023

Probability in Computer Science

Slides by Brad Solomon

Learning Objectives

Review fundamentals of probability in computing

Distinguish the three main types of ‘random’ in computer science

Formalize the concept of randomized algorithms

Randomized Algorithms
A randomized algorithm is one which uses a source of
randomness somewhere in its implementation.

0
1 ∅
2
3
4

Greg

Frank

Betty
Anna

Francis
Peter

Figure from Ondov et al 2016

0
1
0
0
1

𝐻(𝑧)

0 2 1 0 0 4 0 2 0 6
1 0 2 3 1 0 3 4 0 1
2 1 0 2 0 1 0 0 7 2

𝐻(𝑥)
𝐻(𝑦)
𝐻(𝑧)

Quick Primes with Fermat’s Primality Test
If 𝑝 is prime and 𝑎 is not divisible by 𝑝, then 𝑎!"# ≡ 1(mod	𝑝)
But… sometimes if 𝑛 is composite and 𝑎$"# ≡ 1(mod	𝑛)

Fundamentals of Probability
Imagine you roll a pair of six-sided dice.
The sample space Ω is the set of all possible outcomes.

An event 𝐸 ⊆ Ω is any subset.

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?
A random variable is a function from events to numeric values.

The expectation of a (discrete) random variable is:

𝐸[𝑋] = ∑
%∈'

𝑃𝑟{𝑋 = 𝑥} ⋅ 𝑥

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

𝐸 𝑋 + 𝑌 =	?

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables 𝑋 and 𝑌,
𝐸[𝑋 + 𝑌] = 𝐸[𝑋] + 𝐸[𝑌]

𝐸[𝑋 + 𝑌] = ∑
%
𝑥 ⋅ 𝑃𝑟{𝑋 = 𝑥} + ∑

(
𝑦 ⋅ 𝑃𝑟{𝑌 = 𝑦}

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables 𝑋 and 𝑌,
𝐸[𝑋 + 𝑌] = 𝐸[𝑋] + 𝐸[𝑌]

𝐸[𝑋 + 𝑌] = ∑
%
∑
(
(𝑥 + 𝑦)𝑃𝑟{𝑋 = 𝑥, 𝑌 = 𝑦}

𝐸[𝑋 + 𝑌] = ∑
%
𝑥∑
(
𝑃𝑟{𝑋 = 𝑥, 𝑌 = 𝑦} + ∑

(
𝑦∑
%
𝑃𝑟{𝑋 = 𝑥, 𝑌 = 𝑦}

Randomization in Algorithms
1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Average-Case Analysis: BST
R

RL
Smallest Largest

Average-Case Analysis: BST
Let 𝑆(𝑛) be the average total internal path length over all BSTs
that can be constructed by uniform random insertion of 𝑛 objects
Claim: 𝑆(𝑛) is 𝑂(𝑛 log 𝑛)
N=0: N=1:

Average-Case Analysis: BST
Let 𝑆(𝑛) be the average total internal path length over all BSTs
that can be constructed by uniform random insertion of 𝑛 objects

31

2

31

23

1

2

2

1

3

1

3

2

2

3

1

N=3:

Average-Case Analysis: BST
Let 𝑆(𝑛) be the average total internal path length over all BSTs
that can be constructed by uniform random insertion of 𝑛 objects

IH	for	all	0 ≤ 𝑘 < 𝑛	 𝑆(𝑘) is 𝑂(𝑘 log 𝑘)

Average-Case Analysis: BST
Let 𝑆(𝑛) be the average total internal path length over all BSTs
that can be constructed by uniform random insertion of 𝑛 objects
Let 0 ≤ 𝑖 ≤ 𝑛 − 1 be the number of nodes in the left subtree.

Then for a fixed 𝑖, 𝑆(𝑛) = (𝑛 − 1) + 𝑆(𝑖) + 𝑆(𝑛 − 𝑖 − 1)

Average-Case Analysis: BST

𝑆(𝑛) = (𝑛 − 1) +
1
𝑛 ∑
)*#

$"#
𝑆(𝑖) + 𝑆(𝑛 − 𝑖 − 1)

Let 𝑆(𝑛) be the average total internal path length over all BSTs
that can be constructed by uniform random insertion of 𝑛 objects

Average-Case Analysis: BST

𝑆(𝑛) = (𝑛 − 1) +
2
𝑛 ∑
)*#

$"#
𝑆(𝑖)

𝑆(𝑛) ≤ (𝑛 − 1) +
2
𝑛
H

#

$
(𝑐𝑥 ln 𝑥)𝑑𝑥

𝑆(𝑛) = (𝑛 − 1) +
2
𝑛L

)*#

$"#

(𝑐𝑖 ln 𝑖)

𝑆 𝑛 ≤ 𝑛 − 1 +
2
𝑛

𝑐𝑛+

2 ln 𝑛 −
𝑐𝑛+

4 +
𝑐
4 ≈ 𝑐𝑛 ln 𝑛

Average-Case Analysis: BST
Let 𝑆(𝑛) be the average total internal path length over all BSTs
that can be constructed by uniform random insertion of 𝑛 objects
Since 𝑆(𝑛) is 𝑂(𝑛 log 𝑛), if we assume we are randomly
choosing a node to insert, find, or delete* then each operation
takes:

Average-Case Analysis: BST

Summary: All operations are on average 𝑂(𝑙𝑜𝑔𝑛)

Randomness:

Assumptions:

6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Expectation Analysis: Randomized Quicksort

6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Expectation Analysis: Randomized Quicksort

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

…

Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is 𝑂(𝑛 log 𝑛) for any input!

Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is 𝑂(𝑛 log 𝑛) for any input!

Let 𝑋 be the total comparisons and 𝑋), be an indicator variable:

𝑋), = {
1	if	𝑖th	object	compared	to	𝑗th
0	if	𝑖	object not compared to	𝑗th

Then…

Expectation Analysis: Randomized Quicksort

Claim: 𝐸[𝑋),,] =
+

,").#
.

Base Case: (N=2)

Expectation Analysis: Randomized Quicksort

Claim: 𝐸[𝑋),,] =
+

,").# Induction: Assume true for all inputs of < 𝑛

Expectation Analysis: Randomized Quicksort

𝐸[𝑋] = ∑
)*/

$"#
∑

,*).#

$"#
𝐸[𝑋),] 𝐸[𝑋),] =

2
𝑗 − 𝑖 + 1

Expectation Analysis: Randomized Quicksort

𝐸[𝑋] = ∑
)*#

$
∑

,*).#

$
𝐸[𝑋),] 𝐸[𝑋),] =

2
𝑗 − 𝑖 + 1

𝐸[𝑋] = ∑
)*#

$
2(
1
2
+
1
3
+. . . +

1
𝑛 − 𝑖 + 1

)

𝐸[𝑋] = ∑
)*#

$
2(𝐻$"# − 1) ≤ 2𝑛 ⋅ 𝐻$ ≤ 2𝑛𝑙𝑛𝑛

Expectation Analysis: Randomized Quicksort
Summary: Randomized quick sort is 𝑂(𝑛𝑙𝑜𝑔𝑛) regardless of
input

Randomness:

Assumptions:

