# Data Structures and Algorithms Probability in Computer Science

CS 225 Carl Evans

April 12, 2023



Department of Computer Science

Slides by Brad Solomon

## Learning Objectives

Formalize the concept of randomized algorithms

Review fundamentals of probability in computing

Distinguish the three main types of 'random' in computer science

## **Randomized Algorithms**

A **randomized algorithm** is one which uses a source of randomness somewhere in its implementation.

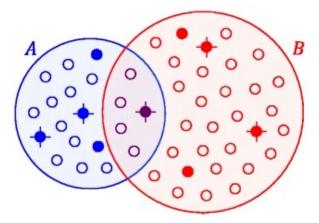
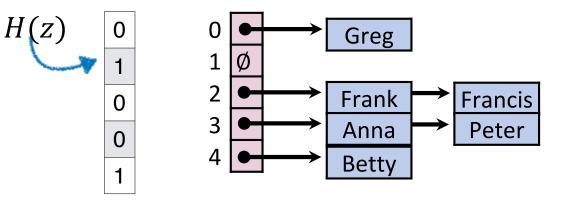


Figure from Ondov et al 2016



| H(x) | 0 | 2 | 1 | 0 | 0 | 4 | 0 | 2 | 0 | 6 |
|------|---|---|---|---|---|---|---|---|---|---|
| H(y) | 1 | 0 | 2 | 3 | 1 | 0 | 3 | 4 | 0 | 1 |
| H(z) | 2 | 1 | 0 | 2 | 0 | 1 | 0 | 0 | 7 | 2 |

# Quick Primes with Fermat's Primality Test If p is prime and a is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$ But... **sometimes** if n is composite and $a^{n-1} \equiv 1 \pmod{n}$

Imagine you roll a pair of six-sided dice.

The sample space  $\Omega$  is the set of all possible outcomes.

An **event**  $E \subseteq \Omega$  is any subset.

Imagine you roll a pair of six-sided dice. What is the expected value? A **random variable** is a function from events to numeric values.

The **expectation** of a (discrete) random variable is:

$$E[X] = \sum_{x \in \Omega} \Pr\{X = x\} \cdot x$$

Imagine you roll a pair of six-sided dice. What is the expected value?

E[X+Y] = ?

Imagine you roll a pair of six-sided dice. What is the expected value? **Linearity of Expectation:** For any two random variables *X* and *Y*, E[X + Y] = E[X] + E[Y]

Imagine you roll a pair of six-sided dice. What is the expected value? **Linearity of Expectation:** For any two random variables *X* and *Y*, E[X + Y] = E[X] + E[Y]

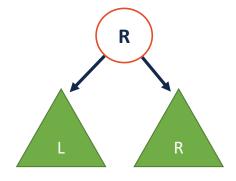
$$| = \sum_{x y} (x + y) Pr\{X = x, Y = y\}$$
$$| = \sum_{x} x \sum_{y} Pr\{X = x, Y = y\} + \sum_{y} y \sum_{x} Pr\{X = x, Y = y\}$$
$$| = \sum_{x} x \cdot Pr\{X = x\} + \sum_{y} y \cdot Pr\{Y = y\}$$

## Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

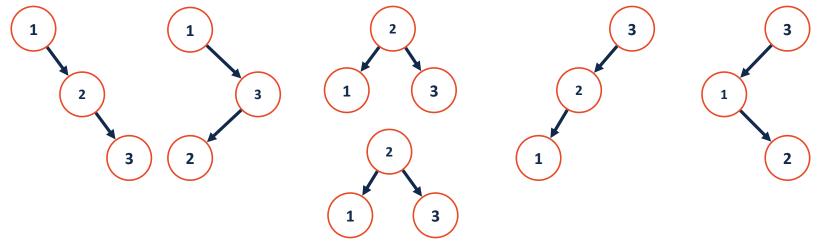


Smallest

Largest

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects **Claim:** S(n) is  $O(n \log n)$ **N=0:** N=1:

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects **N=3**:



Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects

IH for all  $0 \le k < n S(k)$  is  $O(k \log k)$ 

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects Let  $0 \le i \le n - 1$  be the number of nodes in the left subtree.

Then for a fixed *i*, S(n) = (n - 1) + S(i) + S(n - i - 1)

Let S(n) be the **average** total internal path length **over all BSTs** that can be constructed by uniform random insertion of n objects

$$S(n) = (n-1) + \frac{1}{n} \sum_{i=1}^{n-1} S(i) + S(n-i-1)$$

Average-Case Analysis: BST  

$$S(n) = (n-1) + \frac{2}{n} \sum_{\substack{i=1 \ n-1}}^{n-1} S(i)$$

$$S(n) = (n-1) + \frac{2}{n} \sum_{\substack{n=1 \ n-1}}^{n-1} (ci \ln i)$$

$$S(n) \le \binom{i=1}{n-1} + \frac{2}{n} \int_{-1}^{n} (cx \ln x) dx$$

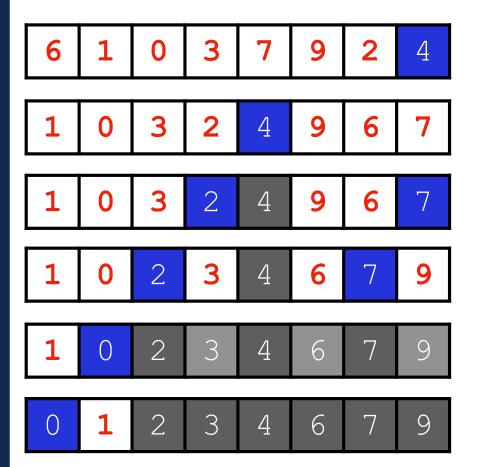
$$S(n) \le (n-1) + \frac{2}{n} \left( \frac{cn^2}{2} \ln n - \frac{cn^2}{4} + \frac{c}{4} \right) \approx cn \ln n$$

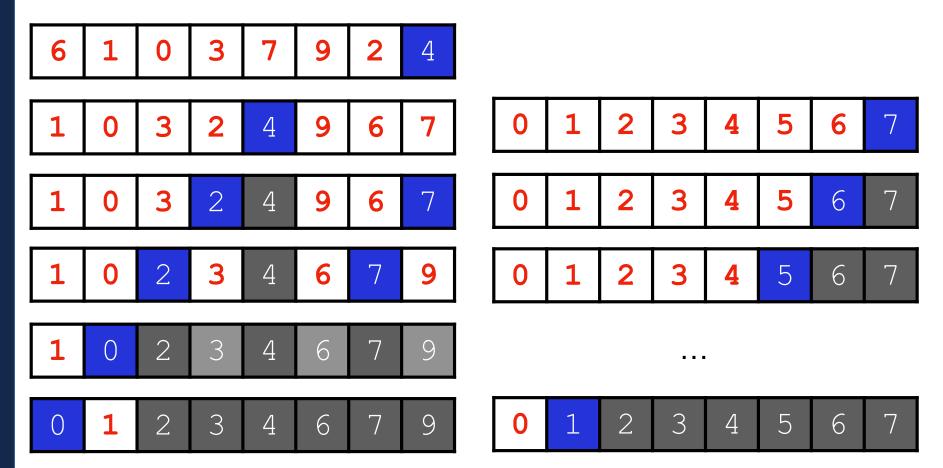
Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects Since S(n) is  $O(n \log n)$ , if we assume we are randomly choosing a node to insert, find, or delete\* then each operation takes:

Summary: All operations are on average O(logn)

**Randomness:** 

**Assumptions:** 





# Expectation Analysis: Randomized Quicksort In randomized quicksort, the selection of the pivot is random. Claim: The expected time is $O(n \log n)$ for any input!

Expectation Analysis: Randomized Quicksort In randomized quicksort, the selection of the pivot is random. Claim: The expected time is  $O(n \log n)$  for any input! Let X be the total comparisons and  $X_{ij}$  be an indicator variable:

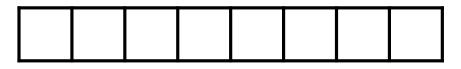
 $X_{ij} = \{ \begin{array}{c} 1 \text{ if } i \text{ th object compared to } j \text{ th} \\ 0 \text{ if } i \text{ object not compared to } j \text{ th} \end{array} \right.$ 

Then...

**Claim:** 
$$E[X_{i,j}] = \frac{2}{j-i+1}$$
.

Base Case: (N=2)

**Claim:**  $E[X_{i,j}] = \frac{2}{j-i+1}$  **Induction:** Assume true for all inputs of < n



$$E[X] = \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} E[X_{ij}] \qquad E[X_{ij}] = \frac{2}{j-i+1}$$

$$E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \quad E[X_{ij}] = \frac{2}{j-i+1}$$

$$E[X] = \sum_{i=1}^{n} 2\left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-i+1}\right)$$

$$E[X] = \sum_{i=1}^{n} 2(H_{n-1} - 1) \le 2n \cdot H_n \le 2n \ln n$$

**Summary:** Randomized quick sort is O(nlogn) regardless of input

**Randomness:** 

**Assumptions:**