CS 225

Data Structures

February 28 - Btree Analysis
G Carl Evans

Btree Properties

A BTrees of order \mathbf{m} is an m-way tree:

- All keys within a node are ordered
- All leaves contain no more than m-1 keys.
- All internal nodes have exactly one more child than keys
- Root nodes can be a leaf or have [2, m] children.
- All non-root, internal nodes have [ceil(m/2), m] children.
- All leaves are on the same level

BTree Analysis

The height of the BTree determines maximum number of _____ possible in search data.
...and the height of the structure is: \qquad .

Therefore: The number of seeks is no more than \qquad .
...suppose we want to prove this!

BTree Analysis

In our AVL Analysis, we saw finding an upper bound on the height (given \mathbf{n}) is the same as finding a lower bound on the nodes (given h).

We want to find a relationship for BTrees between the number of keys (\mathbf{n}) and the height (\mathbf{h}).

BTree Analysis

Strategy:

We will first count the number of nodes, level by level.
Then, we will add the minimum number of keys per node (\mathbf{n}).
The minimum number of nodes will tell us the largest possible height (h), allowing us to find an upper-bound on height.

BTree Analysis

The minimum number of nodes for a BTree of order m at each level:
root:
level 1:
level 2:
level 3:
level h :

BTree Analysis

The total number of nodes is the sum of all of the levels:

BTree Analysis

The total number of keys:

BTree Analysis

The smallest total number of keys is:

So an inequality about \mathbf{n}, the total number of keys:

Solving for \mathbf{h}, since \mathbf{h} is the number of seek operations:

