CS 225

Data Structures

February 23 - BBST Range Search G Carl Evans

Range-based Searches

Balanced BSTs are useful structures for range-based and nearest-neighbor searches.

Q: Consider points in 1D: $\mathbf{p}=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{n}\right\}$.
...what points fall in [11, 42]?

Ex:

Range-based Searches

Q: Consider points in 1D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
...what points fall in [11, 42]?

Ex:

Red-Black Trees in C++

iterator std::map<K, V>::lower_bound(const K \&); iterator std::map<K, V>::upper_bound(const K \&);

Range-based Searches

Consider points in 2D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.

Q: What points are in the rectangle:
[$\left.\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]$?

Q: What is the nearest point to $\left(\mathbf{x}_{1}, \mathrm{y}_{1}\right)$?

Range-based Searches
Consider points in 2D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.

Tree construction:

Nearest Neighbor - k-d Tree

Nearest Neighbor - demo

Nearest Neighbor - demo

Nearest Neighbor - demo

Nearest Neighbor - demo

Backtracking: start recursing backwards -- store "best" possibility as you trace back

Nearest Neighbor - demo

Nearest Neighbor - demo

On ties, use smallerDimVal to determine which point remains curBest

query $=(6,3)$
 $(2,3) \quad(4,7)(8,1)(9,8)$

Nearest Neighbor - demo

Nearest Neighbor - demo

BEST: $(5,4)$

B-Tree Motivation

In Big-O we have assumed uniform time for all operations, but this isn't always true.

However, seeking data from the cloud may take $40 \mathrm{~ms}+$.
...an $\mathrm{O}(\lg (\mathrm{n}))$ AVL tree no longer looks great:

BTree Design Motivations

Knowing that we have large seek times for data, we want to:

BTree (of order m)

-3	8	23	25	31	42	43	55
$m=9$							

Goal: Minimize the number of reads!
Build a tree that uses

BTree Insertion

A BTrees of order \mathbf{m} is an m-way tree:

- All keys within a node are ordered
- All leaves contain hold no more than m-1 keys.

BTree Insertion

When a BTree node reaches \mathbf{m} keys:

BTree Recursive Insert

BTree Recursive Insert

23	42
$m=3$	

| -3 | 8 |
| :--- | :--- | :--- |\quad| 25 | 31 |
| :--- | :--- | :--- |\quad| 43 |
| :--- |
| 55 |

BTree Visualization/Tool

https://www.cs.usfca.edu/~galles/visualization/BTree.html

Btree Properties

A BTrees of order \mathbf{m} is an m-way tree:

- All keys within a node are ordered
- All leaves contain no more than m-1 keys.
- All internal nodes have exactly one more child than keys
- Root nodes can be a leaf or have [2, m] children.
- All non-root, internal nodes have [ceil(m/2), m] children.
- All leaves are on the same level

BTree

BTree Search

BTree Search

BTree Analysis

The height of the BTree determines maximum number of _____ possible in search data.
...and the height of the structure is: \qquad .

Therefore: The number of seeks is no more than \qquad .
...suppose we want to prove this!

BTree Analysis

In our AVL Analysis, we saw finding an upper bound on the height (given \mathbf{n}) is the same as finding a lower bound on the nodes (given h).

We want to find a relationship for BTrees between the number of keys (\mathbf{n}) and the height (\mathbf{h}).

BTree Analysis

Strategy:

We will first count the number of nodes, level by level.
Then, we will add the minimum number of keys per node (\mathbf{n}).
The minimum number of nodes will tell us the largest possible height (h), allowing us to find an upper-bound on height.

BTree Analysis

The minimum number of nodes for a BTree of order m at each level:
root:
level 1:
level 2:
level 3:
level h :

BTree Analysis

The total number of nodes is the sum of all of the levels:

BTree Analysis

The total number of keys:

BTree Analysis

The smallest total number of keys is:

So an inequality about \mathbf{n}, the total number of keys:

Solving for \mathbf{h}, since \mathbf{h} is the number of seek operations:

BTree Analysis

Given $\mathbf{m}=101$, a tree of height $\mathbf{h}=4$ has:

Minimum Keys:

Maximum Keys:

