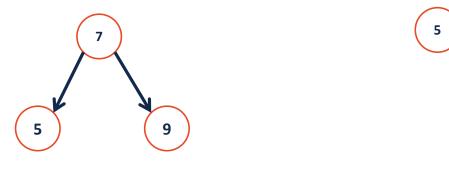
CS 225

Data Structures

February 16 – BST Rotations
G Carl Evans

Height-Balanced Tree

What tree makes you happier?



Height balance: $b = height(T_R) - height(T_L)$

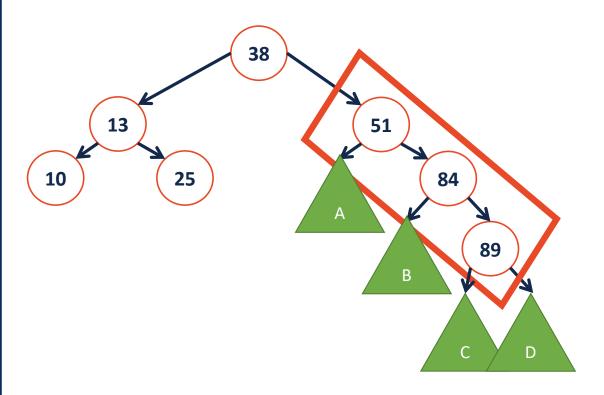
A tree is height balanced if: For all nodes in the tree |b| < 2.

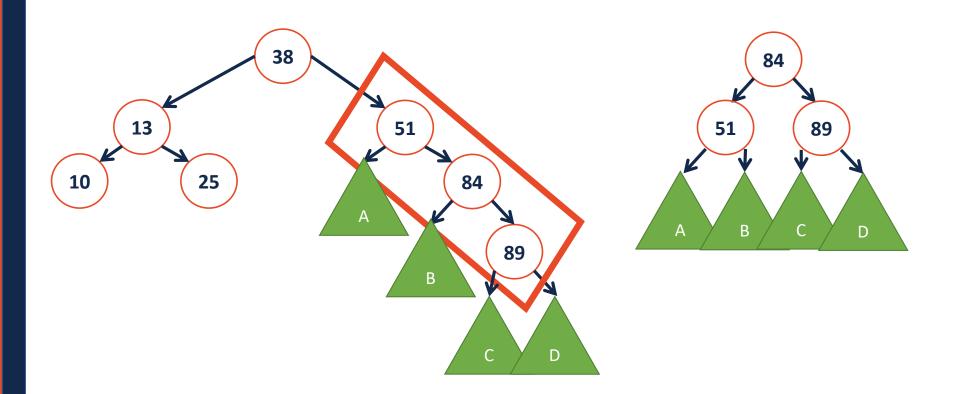
BST Rotation

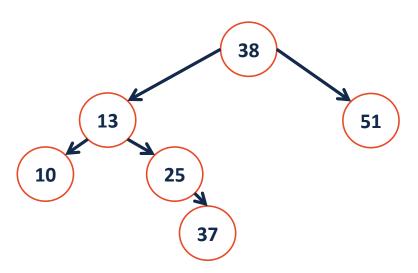
We will perform a rotation that maintains two properties

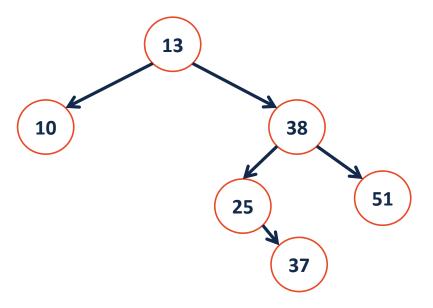
1. Maintain the BST property

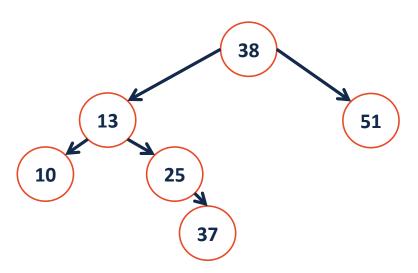
2. Change a "stick" into a "mountain"











BST Rotation Summary

- Four kinds of rotations (L, R, LR, RL)
- All rotations are local (subtrees are not impacted)
- All rotations are constant time: O(1)
- BST property maintained

GOAL:

We call these trees:

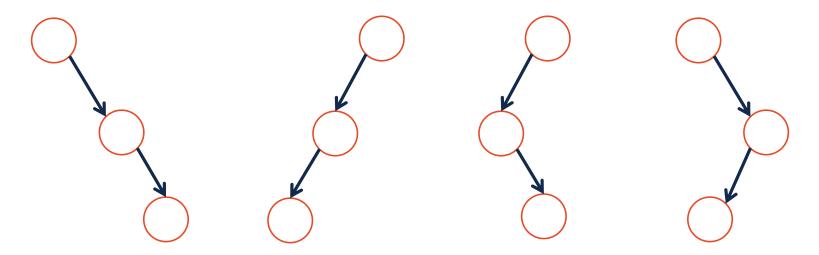
AVL Trees

Three issues for consideration:

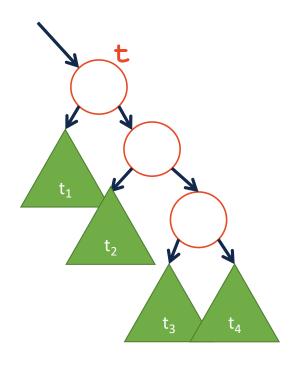
- Rotations
- Maintaining Height
- Detecting Imbalance

AVL Tree Rotations

Four templates for rotations:



Finding the Rotation on Insert

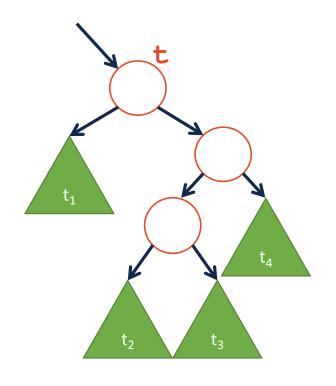


Theorem:

If an insertion occurred in subtrees t_3 or t_4 and a subtree was detected at t, then a _____ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of **t->right** is _____.

Finding the Rotation on Insert



Theorem:

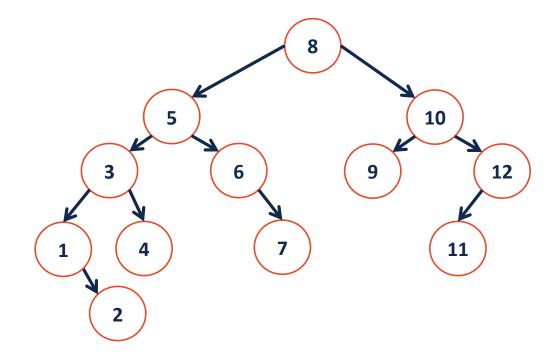
If an insertion occurred in subtrees t_2 or t_3 and a subtree was detected at t, then a _____ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of **t->right** is _____.

Insertion into an AVL Tree

```
_insert(6.5)
```

```
1 struct TreeNode {
2   T key;
3   unsigned height;
4   TreeNode *left;
5   TreeNode *right;
6 };
```



_insert(6.5)

Insertion into an AVL Tree

Insert (pseudo code):

- 1: Insert at proper place
- 2: Check for imbalance
- 3: Rotate, if necessary
- 4: Update height

```
1 struct TreeNode {
2   T key;
3   unsigned height;
4   TreeNode *left;
5   TreeNode *right;
6 };
```

