CS 225

Data Structures

February 14 – BST Balance G Carl Evans

Exam 1 Issues

Several of the free response questions were poorly written which impacted the answers given.

- Grades and feedback assume that the questions were understood
- You can see feedback in office hours now / later will be available
- Grades will be changed to be full points for everyone

BST Analysis – Running Time

Operation	BST Worst Case
find	
insert	
delete	
traverse	

BST Analysis

Therefore, for all BST: Lower bound: h >= O(lg(n))

Upper bound: $h \le O(n)$

BST Analysis

The height of a BST depends on the order in which the data is inserted into it.

ex: 1324576 vs. 4236715

Q: How many different ways are there to insert keys into a BST?

Q: What is the average height of all the arrangements?

Dictionary Analysis – Running Time

Operation	BST Average case*	BST Worst case	Sorted array	Sorted List
find				
insert				
delete				
traverse				

Height-Balanced Tree

What tree makes you happier?

A tree is height balanced if:

BST Rotation

We will perform a rotation that maintains two properties: **1**.

2.

BST Rotation Summary

- Four kinds of rotations (L, R, LR, RL)
- All rotations are local (subtrees are not impacted)
- All rotations are constant time: O(1)
- BST property maintained

GOAL:

We call these trees:

AVL Trees

Three issues for consideration:

- Rotations
- Maintaining Height
- Detecting Imbalance

AVL Tree Rotations

Four templates for rotations:

Finding the Rotation on Insert

Theorem:

If an insertion occurred in subtrees t_3 or t_4 and a subtree was detected at t, then a ______ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of **t->right** is _____.

Finding the Rotation on Insert

Theorem:

If an insertion occurred in subtrees t_2 or t_3 and a subtree was detected at t, then a ______ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of **t->right** is _____.

Insertion into an AVL Tree

_insert(6.5)

_insert(6.5)

Insertion into an AVL Tree

Insert (pseudo code):

- 1: Insert at proper place
- 2: Check for imbalance
- 3: Rotate, if necessary
- 4: Update height

1	<pre>struct TreeNode {</pre>
2	T key;
3	unsigned height;
4	TreeNode *left;
5	TreeNode *right;
6	};