
CS 225
Data Structures

January 18 – Introduction
Jeff Erickson - G Carl Evans - Brad Solomon



G Carl Evans
i = 0

LD B[i] LD C[i]

B[i] + C[i]

ST A[i]

i++

LD B[i] LD C[i]

ST A[i]

...

B[i] + C[i]



Jeff Erickson
Algorithms

Jeff Erickson

Algorithm
s

Jeff Erickson

Download this book at
http://algorithms.wtf

 Algorithms are the lifeblood of computer science.
They are the machines that proofs build

 and the music that programs play.
 Their history is as old as civilization.

Jeff Erickson is a computer science professor at
 the University of Illinois, Urbana-Champaign.

This book is based on algorithms classes
 he has taught there since 1998.

This textbook is a wide-ranging, idiosyncratic treatise
 on the design and analysis of algorithms,
covering several fundamental techniques

with an emphasis on intuition
and the problem-solving process.

The book includes extensive coverage
 of important classical examples,

 hundreds of battle-tested exercises,
 far too many historical digressions,

 and exaclty four typos.

to f
⇤ to v. The resulting walk W

0 in Q has length at most 2`, and the reduction requires O(n+ `)
time.

Figure 5: Reducing to a system of quads. (Pairs of triangles with the same color comprise faces.)

The universal cover of Q is a hyperbolic tiling by squares meeting 2 ḡ at each vertex. Our earlier
arguments imply that W

0 (and therefore W ) is contractible if and only if W
0 is the projection of

a closed walk in the universal cover Q̃.

Figure 6: The universal cover of an orientable system of quads with genus 2.

21.6 Brackets

Dehn’s lemma still applies to the infinite hyperbolic tiling Q̃—Every closed walk in Q̃ contains
either a spur of a subpath that covers all but two edges of some face. But now the complement
of a “long” boundary subpath also has length 2; a single face move does not necessarily decrease
the length of the walk. We need to find larger moves that are still simple enough to find and
execute quickly, but that are guaranteed to shrink any closed walk.

To make this easier, we encode the walk W
0 as a turn sequence. The turn of any subwalk u!v!w

of W is the number of corners at the middle vertex v to the left of that subpath, modulo ḡ. Thus,
for example, a spur is any subpath of W with turn 0. The regularity of the tiling Q̃ implies that
the contractibility of any closed walk depends only on its (cyclic) turn sequence. Moreover, we
can easily compute the turn sequence of any walk in time proportional to its length.

A right bracket is any subpath whose turn sequence consists of 1, followed by zero or more 2s,

6

4 Erickson and Lin Planar and Toroidal Morphs Made Easier

line drawings �0 and �1 with strictly convex faces and the same outer face, we construct a morph
from �0 to �1 that consists of O(n) unidirectional morphing steps, in O(n1+!/2) time. Our
morphing algorithm computes barycentric weights for the darts in �0 and �1 in a preprocessing
phase, and then for each morphing step, interpolates only the pair of weights associated with
a single edge. Our key observation is that changing the weights for a single edge e moves all
vertices in the Floater drawing along lines parallel to e, implying that interpolation corresponds to
a unidirectional morph. (The same observation was made for symmetric edge weights by Chambers
et al. [12].) Our algorithm is significantly simpler than that of Angelini et al. [5] for computing
convexity-preserving morphs. We then extend our algorithm to drawings with non-convex faces,
using a simple alternative approach to that of Kleist et al. [42]. Figure 1 shows a morph computed
by our algorithm; in each frame, the weights of the bold red edge are about to change.

Figure 1: Incrementally morphing between planar graphs.

Next, we describe a natural extension of Floater and Gotsman’s method to geodesic drawings on
the flat torus. Our key observation is that barycentric dart weights can be scaled so that barycentric
interpolation works. Specifically, we call a weight assignment morphable if every column of the
resulting Laplacian linear system sums to zero; averages of morphable weights are morphable.
Given any weight assignment consistent with any convex drawing, we can guarantee morphability
by scaling the weights of all darts leaving each vertex v—or equivalently, scaling each row of the
linear system—by a common positive scalar ↵v. This scaling obviously has no e↵ect on the solution
space of the system. Positivity of the scaling vector ↵ follows from a weighted directed version of
the matrix-tree theorem [8, 20, 63], or from the Perron-Frobenius theorem [14]. We can compute
the appropriate scaling in O(n!/2) time, after which we can compute any intermediate drawing in
O(n!/2) time, matching the performance of Floater and Gotsman exactly. The resulting morphs are
natural and visually appealing, and our proofs of correctness are considerably simpler than those
of Chambers et al. [12]. However, unlike Chambers et al., our new morphing algorithm does not
compute explicit vertex trajectories. Figure 2 shows a morph computed by our algorithm between
two randomly shifted 6 ⇥ 6 toroidal grids. (The authors’ Python implementation is available on
request.)

It remains an open question whether our results can be combined to compute explicit low-
complexity piecewise-linear toroidal morphs without edge collapses. We o↵er some preliminary
observations in Appendix B.

LARGE NEIGHBORLY FAMILIES OF CONGRUENT 3-POLYTOPES 3

Main Theorem. For any positive integer n, there is a neighborly family of
n congruent convex 3-polytopes.

Like the earlier constructions of Dewdney and Vranch [10] and Zaks and
Linhart [30], our construction is based on the Voronoi diagram of a set of
points on a curve, namely the regular circular helix h(t) = (t, cos t, sin t). An
example of our construction is shown in Figure 1, and a single polytope in
our family is shown in Figure 3.

(a) (b)

Figure 1. (a) A neighborly family of sixteen congruent
convex polytopes. (b) An exploded view of the same family.

Our neighborly family (or a linear transformation thereof) was discovered
in the late 1980s by the second author, who was inspired by the way playing
cards overlap when they are fanned. However, except for a brief announce-
ment by Gardner [14] (which was unnoticed by most of the mathematics
community), the construction was never published. The same construction
was independently discovered by the first author in 2001, as a result of his
research on the complexity of three-dimesnional Voronoi diagrams [12].

In Section 3, we generalize our Main Theorem to higher dimensions,
by constructing an arbitrarily large family of congruent convex polytopes
in IRd, any ⌈d/2⌉ of which share a unique common boundary face. We
also introduce a new family of cyclic polytopes, generalizing both the classic
cyclic polytopes and the Petrie polytopes.

2. The Main Theorem

Our construction relies on the following observation, independently dis-
covered by Bochiş and Santos [6, Lemma 4.2] (generalizing their earlier proof
of a special case [5, Lemma 2.8]) and the author [12, Lemma 2.1]. We include
the proof here for the sake of completeness.

u vs

π
λ

u vs

π
λ

y x xy

b

a

b

a

Figure 1. A single pivot in a planar shortest-path tree. Thick (red and blue) lines indicate the shortest-path tree T�; the
dotted (green) path is ⇡�; the hollow arrow indicates the pivoting dart x�y.

blue dual faces are both connected. Thus, both of these unions are topological disks whose common
boundary is a cycle in G⇤, composed of the edge ab and the unique (undirected) path from a to b in C⇤�.
Any active dart must cross this cycle in the opposite direction as the dart u�v. É

Lemma 3.5. We can perform the next pivot into T� in O(log n) amortized time.

Proof: Our algorithms for finding the next dart to pivot and executing the pivot are shown in Figure 2.
Each algorithm performs a constant number of dynamic forest operations, plus a constant amount of
additional work.

Under most circumstances, calling MINPATH(a, b) gives us (the dual of) the next dart x�y to pivot
into the tree, but there are several boundary cases. Two such cases are described by Lemma 3.1(a)
and (b); another arises when there is too much slack for x�y to pivot before � reaches 1. To detect this
latter case, we compute the value �0 that would make the slack of x�y zero and check whether it is
below 1. All these cases are handled by our algorithm FINDNEXTPIVOT.

If FINDNEXTPIVOT returns a dart x�y, we perform the necessary data structure updates by calling
PIVOT(x�y). If � is the current slack of x�y , the parameter � must increase by �/bw(uv) before x�y
actually pivots into T�. We increase the distances of the red vertices by �R = �w(v�u)/bw(uv) by
calling ADDSUBTREE(�R, u), decrease the distances at the blue vertices by �B = �w(u�v)/bw(uv) by
calling ADDSUBTREE(��B, v), and adjust the slacks of all the active darts and their reversals by calling
ADDPATH(��, a, b). Finally, we fix the underlying tree-cotree decomposition using two CUT and two
LINK operations. É

When there are no edges left to pivot into the tree T�, the algorithm FINDNEXTPIVOT returns
NULL. However, we still have to slide the source s by 1� � to reach v. Thus, the distances in the
primal tree have to be updated by calling ADDSUBTREE(�(1��)w(u�v)/bw(uv), v) and, if pred(u) 6= s,
also ADDSUBTREE((1� �)w(v�u)/bw(uv), u). We have shown the following result, already proved by
Klein [48].

Theorem 3.6. Let G be a directed plane graph with n vertices, and let s be any vertex in G. After

O(n log n) preprocessing time, we can maintain a representation of the shortest-path tree Ts that supports

the following operations:

• Given any vertex v, return the shortest-path distance from s to v in O(log n) time.

• Given any vertex v, return the last edge on the shortest-path from s to v in O(1) time.

• For any edge sv, change the source vertex from s to v in O(k log n) amortized time, where k is the

number of edges in Ts \ Tv .

10

Efficiently Hex-Meshing Things with Topology 13

Figure 11. A portion of the quad mesh Q, its triangulation @T , the dual curves Q⇤, and the homologous curves �⇢ @T ⇤.

Let � denote the diagonals used to refine Q into @T , and let �⇤ denote the corresponding edges1

of the dual graph @T ⇤. Finally, let � denote the subgraph @T ⇤ \�⇤; see Figure 11. Every vertex in �2

has degree 2, which implies that � is a collection of disjoint simple cycles. Contracting all the edges3

in �⇤ transforms � into the dual complex Q⇤ of the original quad mesh Q. Thus, � is homotopic to a4

covering of Q⇤ by edge-disjoint circuits, which implies that � and Q⇤ are homologous. In particular, � is5

null-homologous in ⌦.6

Now let ⌃ be any 2-chain in T ⇤ such that @⌃ = �; if no such 2-chain exists, then Q⇤ is not null-7

homologous in ⌦. We easily observe that ⌃ is the union of disjoint embedded quadrangulated surfaces.8

In particular, each interior vertex of ⌃ is incident to either three or four quadrangular facets of T ⇤, and9

the intersection of ⌃ with any tetrahedron in T is either empty or a disk. See Figure 7.10

Next, we refine T into a hex mesh Y by splitting each tetrahedron into either four, seven, or eight11

cubes, depending on whether the tetrahedron intersects zero, three, or four facets of ⌃, as shown in12

Figure 12. Equivalently, we partition each tetrahedron in T into four cubes by central subdivision, and13

then expand the surface ⌃ into a layer of cubes.14

Figure 12. Templates for refining tetrahedra into cubes; compare with Figure 7.

5.3 Refining the Buffer Cubes15

It remains only to refine the buffer cubes in B to conform to the boundary of the refined triangulation Y .16

Each buffer cube has an outer facet in Q, an inner facet on the boundary of ⌦ \ B, and four transition17

facets. The interior mesh Y subdivides the inner facet of each buffer cube into ten quadrilaterals, as18

shown in Figure 13, and each edge of that inner facet into three segments. Thus, the transition facets19

of B are combinatorially hexagons.20



CS 199-225: Data Structure Theory
§ Data structures from a language-independent standpoint
§ Techniques for design and analysis 

§ Amortized, randomized, multilevel, competitive, kinetic, persistent, …

§ More advanced versions of data structures studied in the main class
§ Quacks, ropes, splay trees, scapegoat trees, skip lists, pairing heaps, …

§ No coding, but light written homeworkAlgorithms Lecture �: Treaps and Skip Lists [Sp’��]

0 1 2 3 4 5 6 7 8 9 ∞–∞

0 1 3 6 7 9 ∞–∞

1 6 7 ∞–∞

1 7 ∞–∞

7 ∞–∞

∞–∞

Searching for 5 in a skip list.

�.�.� Number of Levels

The actual values of the search keys don’t a�ect the skip list analysis, so let’s assume the keys
are the integers 1 through n. Let L(x) be the number of levels of the skip list that contain some
search key x , not counting the bottom level. Each new copy of x is created with probability 1/2
from the previous level, essentially by flipping a coin. We can compute the expected value of
L(x) recursively—with probability 1/2, we flip tails and L(x) = 0; and with probability 1/2, we
flip heads, increase L(x) by one, and recurse:

E[L(x)] =
1
2
· 0+ 1

2

�
1+ E[L(x)]
�

Solving this equation gives us E[L(x )] = 1.
In order to analyze the expected worst-case cost of a search, however, we need a bound on

the number of levels L =maxx L(x). Unfortunately, we can’t compute the average of a maximum
the way we would compute the average of a sum. Instead, we derive a stronger result: The
depth of a skip list storing n keys is O(logn) with high probability. “High probability” is a
technical term that means the probability is at least 1�1/nc for some constant c � 1; the hidden
constant in the O(log n) bound could depend on c.

In order for a search key x to appear on level `, it must have flipped ` heads in a row when it
was inserted, so Pr[L(x ) � `] = 2�`. The skip list has at least ` levels if and only if L(x)� ` for
at least one of the n search keys.

Pr[L � `] = Pr
⇥
(L(1)� `) _ (L(2)� `) _ · · ·_ (L(n)� `)

⇤

Using the union bound — Pr[A_ B] Pr[A] + Pr[B] for any random events A and B — we can
simplify this as follows:

Pr[L � `] 
nX

x=1

Pr[L(x)� `] = n · Pr[L(x)� `] = n
2`

.

When `  lg n, this bound is trivial. However, for any constant c > 1, we have a strong upper
bound

Pr[L � c lg n] 1
nc�1

.

We conclude that with high probability, a skip list has O(logn) levels.

�

�6½. E�������� H����

node. (Specifically, splicing nodes into the root list during a D�����M�� is not considered
a promotion.)

Here’s a more formal description of the algorithm. The input is a pointer to a node v

and the new value k for its key.

D�������K��(v, k):
key(v) k

update the pointer to the smallest key
P������(v)

P������(v):
unmark v

if parent(v) 6= N���
remove v from parent(v)’s list of children
insert v into the root list
if parent(v) is marked

P������(parent(v))
else

mark parent(v)

The P������ algorithm calls itself recursively, resulting in a ‘cascading promotion’.
Each consecutive marked ancestor of v is promoted to the root list and unmarked,
otherwise unchanged. The lowest unmarked ancestor is then marked, since one of its
children has been promoted.

a

b c d e

f g h i j k

l m n o

p

a

b c d e

f

g h i j k

l m

n o

p

a

b c

d

e

f

g h i j

kl m

n o

p

d

k

j

c

i

o

b

g h

n

a

e

f

l m

p

f

l m

p

d

k

j

c

i

o

a

e

hb

g

n

Decreasing the keys of four nodes: �rst f , then d , then j, and �nally h. Dark nodes are marked.
D�������K��(h) causes nodes b and a to be recursively promoted.

The time to decrease the key of a node v isO(1+#consecutive marked ancestors of v).
Binomial heaps have logarithmic depth, so if we still had only full binomial heaps, the
running time would be O(log n). Unfortunately, promoting nodes destroys the nice
binomial tree structure; our trees no longer have logarithmic depth! In fact, D�������K��
runs in ⇥(n) time in the worst case.

To compute the amortized cost of D�������K��, we’ll use the potential method,
just as we did for D�����M��. We need to find a potential function � that goes up a

6



CS 199-225: Data Structure Theory

Course Schedule: Monday 5:00 — 5:50 PM

https://courses.engr.illinois.edu/cs225/sp2024/pages/honors.html

0216 Siebel Center for Computer Science

First class: January 29th

https://courses.engr.illinois.edu/cs225/sp2022/pages/honors.html


Brad Solomon

Fast search of thousands of short read sequencing experiments. Brad Solomon and Carl Kingsford. Nature Biotech 2016.
Reducing reference bias using multiple population reference genomes. Chen et al. Genome Biology 2021

GTEx



Thierry 
Ramais





How to contact us?

• Admin Email 
cs225admin@lists.cs.illinois.edu

• Discord
https://discord.gg/YuEwhnR

Do not DM Staff on Discord!

mailto:cs225admin@lists.cs.illinois.edu
https://discord.gg/YuEwhnR


CS 128ECE 220

CS 225

CS 173 MATH 213



Everything about CS 225
https://courses.engr.illinois.edu/cs225/

Information on:
Staff
Communications
Lab Sections
MPs
Exams
Grading
Academic Integrity

https://courses.engr.illinois.edu/cs225/


Grading Notes
Points Grade Points Grade Points Grade

[930, ∞)* A+ [930, ∞)* A [900, 930) A-

[870, 900) B+ [830, 870) B [800, 830) B-

[770, 800) C+ [730, 770) C [700, 730) C-

[670, 700) D+ [630, 670) D [600, 630) D-

(600, 0] F

* To get an A+ you need the score of 930 but you also need to have your final project or for 
some other work in this course to be seen as exceptional by course staff.



What is this course about?





What about C++

Material from CS 128
https://learncpp.online/lessons



Problems of the Day (PotDs)



Open Lab This Week

This week lab are open office hours to help you get your machine setup 
and can be reached at this link.


