Data Structures and Algorithms Probability in Computer Science

CS 225 G Carl Evans

April 14, 2023

Department of Computer Science

Slides by Brad Solomon

Randomization in Algorithms

- 1. Assume input data is random to estimate average-case performance
- 2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects **Claim:** S(n) is $O(n \log n)$ **N=0:** N=1:

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects **N=3**:

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects Let $0 \le i \le n - 1$ be the number of nodes in the left subtree.

Then for a fixed *i*, S(n) = (n - 1) + S(i) + S(n - i - 1)

Let S(n) be the **average** total internal path length **over all BSTs** that can be constructed by uniform random insertion of n objects

$$S(n) = (n-1) + \frac{1}{n} \sum_{i=0}^{n-1} S(i) + S(n-i-1)$$

Average-Case Analysis: BST

$$S(n) = (n-1) + \frac{2}{n} \sum_{\substack{i=1 \ n-1}}^{n-1} S(i)$$

$$S(n) = (n-1) + \frac{2}{n} \sum_{\substack{n=1 \ n-1}}^{n-1} (ci \ln i)$$

$$S(n) \le \binom{i=1}{n-1} + \frac{2}{n} \int_{-1}^{n} (cx \ln x) dx$$

$$S(n) \le (n-1) + \frac{2}{n} \left(\frac{cn^2}{2} \ln n - \frac{cn^2}{4} + \frac{c}{4} \right) \approx cn \ln n$$

Summary: All operations are on average O(logn)

Randomness:

Assumptions:

Expectation Analysis: Randomized Quicksort In randomized quicksort, the selection of the pivot is random. Claim: The expected comparisons is $O(n \log n n)$ for any input! Let X be the total comparisons and X_{ij} be an indicator variable:

 $X_{ij} = \{ \begin{array}{l} 1 \text{ if } i \text{th object compared to } j \text{th} \\ 0 \text{ if } i \text{th object not compared to } j \text{th} \end{array} \right.$

Then...

Key Ideas

1. Never compare X_i with X_i

2. Never compare X_i and X_j more than once

Claim:
$$E[X_{ij}] = \frac{2}{j-i+1}$$

Base Case: (N=2)

Claim: $E[X_{i,j}] = \frac{2}{j-i+1}$ **Induction:** Assume true for all inputs of < n

$$E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \qquad E[X_{ij}] = \frac{2}{j-i+1}$$

$$E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \qquad E[X_{ij}] = \frac{2}{j-i+1}$$

$$E[X] = \sum_{i=1}^{n} 2\left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-i+1}\right)$$

$$E[X] = \sum_{i=1}^{n} 2(H_{n-1} - 1) \le 2n \cdot H_n \le 2n \ln n$$

Summary: Randomized quick sort is O(nlogn) regardless of input

Randomness:

Assumptions:

Probabilistic Accuracy: Fermat primality test Pick a random *a* in the range [2, p - 2]If *p* is prime and *a* is not divisible by *p*, then $a^{p-1} \equiv 1 \pmod{p}$ But... *sometimes* if *n* is composite and $a^{n-1} \equiv 1 \pmod{p}$

Probabilistic Accuracy: Fermat primality test $\begin{vmatrix} a^{p-1} \equiv 1 \pmod{p} \end{vmatrix} a^{p-1} \not\equiv 1 \pmod{p} \end{vmatrix}$			
p is prime			
p is not prime			

Probabilistic Accuracy: Fermat primality test

Let's assume $\alpha = .5$

First trial: $a = a_0$ and prime test returns 'prime!'

Second trial: $a = a_1$ and prime test returns 'prime!'

Third trial: $a = a_2$ and prime test returns 'not prime!'

Is our number prime?

What is our **false positive** probability? Our **false negative** probability?

Probabilistic Accuracy: Fermat primality test

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Types of randomized algorithms

A **Las Vegas** algorithm is a randomized algorithm which will always give correct answer if run enough times but has no fixed runtime.

A **Monte Carlo** algorithm is a randomized algorithm which will run a fixed number of iterations and may give the correct answer.

Next Class: Randomized Data Structures

Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on **expected** performance

Randomized data structures 'cheat' tradeoffs!