
CS 225
Data Structures

October 14 – Disjoint Sets and Iterators
G Carl Evans



Disjoint Sets

2  5  9 7 0  1  4  8 3  6

1 2 3 4 5 6 70

8 5 -1 -1 -1 3 -14

8 9

4 5

0

1

2

345

6

7

8
9



Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 -4 10 7 -36

8 9

7 7

10 11

4 5

1 2 3 4 5 6 70

6 6 8 -8 10 7 -46

8 9

7 7

10 11

4 5

Union by height

Union by size

Idea: Keep the height of 
the tree as small as 
possible.

Idea: Minimize the 
number of nodes that 
increase in height

We will show the height of the tree is: log(n). 



Union by Size

To show that every tree in a disjoint set data structure using union by 
size has a height of at most O(log n) we will show that the inverse.

Base Case

Inductive Hypothesis



Union by Size

Case 1 



Union by Size

Case 2



Union by Height 

Much like before we will show the min(nodes) in a tree with a root of 
height 𝑘 ≥ 2!

Base Case

IH



Disjoint Sets Find
int DisjointSets::find(int i) {
if ( s[i] < 0 ) { return i; }
else { return find( s[i] ); } 

}

1
2
3
4

1

2

3

6

7

8

9

4

5

10

11



Path Compression

1

2

3

6

7

8

9

4

5

10

11

1

2

3

6 7

8

9
4

5

10

11



Union by Height - Rank

Base
New UpTrees have Rank = 

When you join two UpTrees



Union by Rank

1. For all non-root nodes x, rank(x) < rank(parent(x))

2. Rank only changes for roots and only up



Disjoint Sets Analysis

The iterated log function:
The number of times you can take a log of a number.

log*(n) = 
0                         , n ≤ 1
1 + log*(log(n)) , n > 1

What is lg*(265536)?



Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and 
path compression on find:

Any sequence of m union and find operations result in the 
worse case running time of O( ____________ ),

where n is the number of items in the Disjoint Sets.


