
CS 225
Data Structures

March 1 – Btrees Analysis and
Functions as Data

G Carl Evans

Btree Properties
A BTrees of order m is an m-way tree:
- All keys within a node are ordered
- All leaves contain no more than m-1 keys.

- All internal nodes have exactly one more child than keys
- Root nodes can be a leaf or have [2, m] children.
- All non-root, internal nodes have [ceil(m/2), m] children.

- All leaves are on the same level

BTree Analysis
The height of the BTree determines maximum number of
____________ possible in search data.

…and the height of the structure is: ______________.

Therefore: The number of seeks is no more than __________.

…suppose we want to prove this!

BTree Analysis
In our AVL Analysis, we saw finding an upper bound on the
height (given n) is the same as finding a lower bound on the
nodes (given h).

We want to find a relationship for BTrees between the
number of keys (n) and the height (h).

BTree Analysis
Strategy:
We will first count the number of nodes, level by level.

Then, we will add the minimum number of keys per node (n).

The minimum number of nodes will tell us the largest possible
height (h), allowing us to find an upper-bound on height.

BTree Analysis
The minimum number of nodes for a BTree of order m at
each level:

root:

level 1:

level 2:

level 3:
…
level h:

BTree Analysis
The total number of nodes is the sum of all of the levels:

BTree Analysis
The total number of keys:

BTree Analysis
The smallest total number of keys is:

So an inequality about n, the total number of keys:

Solving for h, since h is the number of seek operations:

Functions As Data

Consider the function from Excel
COUNTIF(range, criteria)

template <typename Iter, typename Pred>
int Countif(Iter begin, Iter end, Pred pred) {

int count = 0;
auto cur = begin;

while(cur != end) {
if(pred(*cur))

++count;
++cur;

}

return count;
}

Countif.hpp
10
11
12
13
14
15
16
17
18
19
20
21
22

COUNTIF in C++

bool isNegative(int num) { return (num < 0); }

class IsNegative {
public:

bool operator() (int num) { return (num < 0); }
};

int main() {
std::vector<int> numbers = {1, 102, 105, 4, 5, 27, 41, -7, 999};

auto isnegl = [](int num) { return (num < 0); };
auto isnegfp = isNegative;
auto isnegfuctor = IsNegative();

std::cout << "There are " << Countif(numbers.begin(), numbers.end(), _______)
<< " negative numbers" << std::endl;

main.cpp
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Ways to use Countif()

Lambdas in C++ (functions with no name)

[](){ }

int big;
std::cout << "How big is big? ";
std::cin >> big;

auto isbig = [big](int num) { return (num >= big); };

std::cout << "There are " << Countif(numbers.begin(), numbers.end(), isbig)
<< " big numbers" << std::endl;

}

main.cpp
29
30
31
32
33
34
35
36
37
38

Power of the lambda

