
CS 225
Data Structures

February 24 – BBST Summary
G Carl Evans

Summary of Balanced BST
Pros:
- Running Time:

- Improvement Over:

- Great for specific applications:

Summary of Balanced BST
Cons:
- Running Time:

- In-memory Requirement:

Range-based Searches
Q: Consider points in 1D: p = {p1, p2, …, pn}.

…what points fall in [11, 42]?

Tree construction:

Range-based Searches
Balanced BSTs are useful structures for range-based and
nearest-neighbor searches.

Q: Consider points in 1D: p = {p1, p2, …, pn}.
…what points fall in [11, 42]?

Ex:
3 6 11 33 41 44 55

Range-based Searches

6

3 11

33

44

41

Q: Consider points in 1D: p = {p1, p2, …, pn}.
…what points fall in [11, 42]?

Red-Black Trees in C++
C++ provides us a balanced BST as part of the standard library:

std::map<K, V> map;

Red-Black Trees in C++
V & std::map<K, V>::operator[](const K &)

Red-Black Trees in C++
V & std::map<K, V>::operator[](const K &)

std::map<K, V>::erase(const K &)

Red-Black Trees in C++
iterator std::map<K, V>::lower_bound(const K &);
iterator std::map<K, V>::upper_bound(const K &);

Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Q: What points are in the rectangle:
[(x1, y1), (x2, y2)]?

Q: What is the nearest point to (x1, y1)?

p1

p2

p4

p3

p7

p5 p6

Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Tree construction:

p1

p2

p4

p3

p7

p5 p6

Range-based Searches

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

Range-based Searches

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

Nearest Neighbor - demo

Nearest Neighbor - demo

Nearest Neighbor - demo

Nearest Neighbor - demo

Nearest Neighbor - demo
Backtracking: start recursing backwards -- store “best” possibility as you trace back

Nearest Neighbor - demo

Nearest Neighbor - demo
On ties, use smallerDimVal to determine which point remains curBest

Nearest Neighbor - demo

Nearest Neighbor - demo

Every Data Structure So Far
Unsorted
Array

Sorted
Array

Unsorted
List

Sorted
List

Binary Tree BST AVL

Find

Insert

Remove

Traverse

B-Tree Motivation
In Big-O we have assumed uniform time for all operations,
but this isn’t always true.

However, seeking data from the cloud may take 40ms+.
…an O(lg(n)) AVL tree no longer looks great:

5

3 6

4

2

8

10

9 12

111 7

BTree Motivations
Knowing that we have large seek times for data, we want
to:

