CS 225

Data Structures

February 24 — BBST Summary

G Carl Evans

Would you like to attend UIUC tuition-free?
What if you could even get paid to go to school?
Come and join us!
lllinois Cyber Security Scholars Program

Info Session

Thursday, March 2, 2023
5:00 - 6:45 pm @ 2405 Siebel Center

PIZZAWILL BE PROVIDED!

To learn more, visit:
https://publish.illinois.edu/cybersecurityscholars

Applicants must be US citizens or legal permanent residents.

Would you like to attend UIUC tuition-free?
What if you could even get paid to go ta school?
Come and join us!

lllinois Cyber Security
Scholars Program
Info Session

Thursday; March 2,2023

5:00-6:45 pm @ 2405 Siebel Center
PIZZA WILL BE PROV|DED!

This NSF-funded CyberCorps Scholarship for Service
program provides scholarships to admitted, full-time
UIUC students interested in cybersecurity.

Benefits include:
» Full tuition and fee waiver

» Stipend, allowance, and professional development
funds

* Research experience with security experts
» Expertise in a growing professional field

Application Deadline:
March 31, 2023

To learn more, visit:
publish.illinois.edu/cybersecurityscholars

Applicants must be US citizens or legal permanent residents.

Summary of Balanced BST

Pros:
- Running Time:

- Improvement Over:

- Great for specific applications:

Summary of Balanced BST

Cons:
- Running Time:

- In-memory Requirement:

Range-based Searches

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?

Tree construction:

Range-based Searches

Balanced BSTs are useful structures for range-based and
nearest-neighbor searches.

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?

Range-based Searches

Q: Consider points in 1D: p = {p1, Py ---» Pn}-
..what points fall in [11, 42]?

Red-Black Trees in C++

C++ provides us a balanced BST as part of the standard library:
std: :map<K, V> map;

Red-Black Trees in C++
V & std: :map<K, V>::operator[] (const K &)

Red-Black Trees in C++
V & std: :map<K, V>::operator[] (const K &)

std: :map<K, V>::erase(const K &)

Red-Black Trees in C++

iterator std: :map<K, V>::lower bound(const K &);
iterator std: :map<K, V>::upper bound(const K &);

Range-based Searches

Consider points in 2D: p ={p1, P2, «--» Pn}-

Q: What points are in the rectangle:
[(xlr yl)l (XZr yZ)]?

Q: What is the nearest point to (x4, y4)?

o
P2 o o
Ps Pe
o
P1
)
P3 ()

Range-based Searches
Consider points in 2D: p ={p1, P2, «--» Pn}-

Tree construction:

o
P2 o o
Ps Pe
o
P1
)
P3 ()

Range-based Searches

Range-based Searches

S e

Nearest Neighbor - demo

(4.2)

}S,q) (q (o)

2% @@ G, l) (‘i%)

[

© = MWL U HN\ND

Ll

o1 23450+ 859w

Nearest Neighbor - demo

(1, e

}Sn") (Q (0)

2 @G l) (q %)

N MWL NI S
_~
<=
F

t t

349&1—%“1’10

Nearest Neighbor - demo

“
(112) 3. 0 l
}Sn") (Q (0) ;
@y §)6EH Gy |

o|234§b1-%'4’w

Nearest Neighbor - demo

(1’ 2) Cuw eSSy = (2‘3)

}S,H) (‘i (0)

€» @9 (8) @9

© = MWL O NNDD T

Nearest Neighbor - demo

Backtracking: start recursing backwards -- store “best” possibility as you trace back

W?
(1_ 2) Cur st = (5,H) 2 |
: PR . ' -
PR R ‘;
2» @EH6H @y |

0‘234901’?“1‘0

Nearest Neighbor - demo

(0
q?

¢ 4
%

@ —
5

Y

3 i 4

2 @

|

X [

ol234901'%"i’u>

Nearest Neighbor - demo

On ties, use smallerDimval to determine which point remains curBest

“
- a T

e T
2% @Y 6) @) j‘ t |

olZ%ds’b??‘iﬁ’lo

Nearest Neighbor - demo

“
(1) 4 !
NN 0
}Sa“') (Q (0) :
2> @) G, y @9 ? 21

otzaqsv?tcﬁo

Nearest Neighbor - demo

[
—

(1 ’ 2)
7~

24
(5,4) |
(2, 3) ("’ ‘7>

.’ b \
/ N

A

© = MWL O NDOD
._

o!Z%‘ISD??Q’ID

BEST‘ (an)

Every Data Structure So Far

Unsorted Sorted Unsorted Sorted Binary Tree | BST AVL
Array Array List List

Find

Insert

Remove

Traverse

B-Tree Motivation

In Big-O we have assumed uniform time for all operations,
but this isn’t always true.

However, seeking data from the cloud may take 40ms+.
...an O(lg(n)) AVL tree no longer looks great: °

BTree Motivations

Knowing that we have large seek times for data, we want
to:

