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Summary of Balanced BST

Pros:
- Running Time:

- Improvement Over:

- Great for specific applications:



Summary of Balanced BST

Cons:
- Running Time:

- In-memory Requirement:



Range-based Searches

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?

Tree construction:



Range-based Searches

Balanced BSTs are useful structures for range-based and
nearest-neighbor searches.

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?




Range-based Searches

Q: Consider points in 1D: p = {p1, Py ---» Pn}-
..what points fall in [11, 42]?



Red-Black Trees in C++

C++ provides us a balanced BST as part of the standard library:
std: :map<K, V> map;



Red-Black Trees in C++
V & std: :map<K, V>::operator[] ( const K & )



Red-Black Trees in C++
V & std: :map<K, V>::operator[] ( const K & )

std: :map<K, V>::erase( const K & )



Red-Black Trees in C++

iterator std: :map<K, V>::lower bound( const K & );
iterator std: :map<K, V>::upper bound( const K & );



Range-based Searches

Consider points in 2D: p ={p1, P2, «--» Pn}-

Q: What points are in the rectangle:
[ (xlr yl)l (XZr yZ) ]?

Q: What is the nearest point to (x4, y4)?
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Range-based Searches
Consider points in 2D: p ={p1, P2, «--» Pn}-

Tree construction:
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Range-based Searches




Range-based Searches
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Nearest Neighbor - demo
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Nearest Neighbor - demo
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Nearest Neighbor - demo
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Nearest Neighbor - demo
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Nearest Neighbor - demo

Backtracking: start recursing backwards -- store “best” possibility as you trace back
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Nearest Neighbor - demo
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Nearest Neighbor - demo

On ties, use smallerDimval to determine which point remains curBest
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Nearest Neighbor - demo
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Nearest Neighbor - demo
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Every Data Structure So Far

Unsorted Sorted Unsorted Sorted Binary Tree | BST AVL
Array Array List List

Find

Insert

Remove

Traverse



B-Tree Motivation

In Big-O we have assumed uniform time for all operations,
but this isn’t always true.

However, seeking data from the cloud may take 40ms+.
...an O(lg(n)) AVL tree no longer looks great: °




BTree Motivations

Knowing that we have large seek times for data, we want
to:



