
 
Lab_heaps: Precarious Priority Queues 

Lab #10 April 6 - April 10, 2022 

Welcome to Lab Heaps! 
Course Website: https://courses.engr.illinois.edu/cs225/sp2022/assignments/ 
 
 
Overview 
Heaps are used to quickly find the highest priority items. The heap 
structure uses an array to represent a tree. The insert, and remove 
functions run in O(lg n) time. The building of a heap has a run time of 
O(n), and this is where it differs from previous structures such as an 
AVL tree. 
 
Heap Properties 
A heap is a complete binary tree, where all the descendants of the root 
have less of a priority than the root. For a Min (Max) Heap, the root 
will always be the smallest (largest) element. A Heap is not like a BST; 
an in-order traversal does not necessarily yield an ordered list. 
 

Exercise 1:  Suppose the current node is at index i, fill in the blank for 
the indices of certain locations in the tree. You will be implementing 
these as functions in your lab. Remember, these formulas depend on 
whether you are populating the 0th index of the array or not. 

 

Current node =             i 

 

Root Index    =              0                    Left child    =       

Right Child    =                                    Parent         =        

 
 
Root Index    =              1                    Left child    =         

Right Child    =                                   Parent         =         

 
 
 

Insert, Remove, and Heapify 
Inserting into the heap: 

• append the new element to the end of the array storing the 
heap. 

• “bubble up” the new element until it is in the right position. 
HeapifyUp is the “bubble up” function. 

Removing an element from a heap: 
• pop out the root and replace it with the element at the end of 

the array 
• “bubble down” from the root to preserve the heap property. 

HeapifyDown is the “bubble down” function.  
 

Exercise 2.1: Suppose 7 is inserted into the heap below. What will 7’s 
left and right children be? 

 
 
Left child    =                                       Right Child    =  
 
Exercise 2.2: What is the array representation of the tree after 7 is 
inserted? 
 

*        
  
 
Exercise 2.3: What is the array representation of the tree if 3 is 
removed, after 7 is inserted? 
 
 

*        
  
 
 
 



Build a Heap: 
When given an unsorted array, the benefit of using heaps is that you 
can build it in O(n) time. The right half of the array (All of the nodes 
that are leaves) is already in a heap structure. Recursively using 
heapifyDown() from the last element that is not a leaf (that is, from 
the second last “level” in the tree) to the beginning of the array will 
convert the unsorted array to a heap. 
 

   * 98 90 3 14 34 67 29  
 

Exercise 3: After using the buildHeap algorithm on the array above, 
draw the corresponding tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the programming part of this lab, you will complete the following 
functions: 

● root(), leftChild(), rightChild(), parent() 
o Exercise 1 of the worksheet will be helpful 

● hasAChild(), maxPriority() 
o For hasAChild(), think about how you can use the 

previous implemented functions to find if a node has a 
child. 

● heapifyDown(), heapifyUp() 
o Given in lecture 

● heap(const std::vector<T>& elems) 
o Read the “Build a Heap” section 

● pop() and peek() 
o pop() is similar to removeMin() from lecture 

● push() and empty() 
o push() is similar to insert() from lecture 

● updateElem() 
o Given a key and a new priority, update that key’s 

priority and reformat the tree to satisfy heap properties 
in O(log n) 
 

As your TA and CAs, we’re here to help with your 
programming for the rest of this lab section! ☺  


