This assignment is best completed in groups. Choose the following roles for yourselves. If you only have three people, combine Reporter and Process Analyst.

<table>
<thead>
<tr>
<th>Team Roles</th>
<th>Team Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manager</td>
<td>Reads the questions out loud, keeps track of time, and makes sure everyone contributes appropriately.</td>
</tr>
<tr>
<td>Reporter</td>
<td>Talks to the instructor and other teams.</td>
</tr>
<tr>
<td>Quality Control</td>
<td>Records all answers and questions and provides team reflection to team and instructor.</td>
</tr>
<tr>
<td>Process Analyst</td>
<td>Considers how the team could work and learn more effectively.</td>
</tr>
</tbody>
</table>

Objectives

We are going to learn an algorithm for determining the network flow capacity of a graph. In the following graphs, the edge weights represent capacity. There are four sections: spend 10–15 minutes on each one.

Graph G1

We are given as input graph G1.

We create two new graphs: a flow graph F and a residual graph R.

Problem 1.

The algorithm works by selecting paths from the residual graph R. The first path selected is $A \rightarrow B \rightarrow C \rightarrow F$ in graph R. This path’s flow capacity is 3. What do you think determines the flow capacity?
The algorithm uses the path to modify graphs F and R. Here is the result.

Graph F

```
A  B  C  D  E  F
0  3  3  0  0  0
```

Graph R

```
A  B  C  D  E  F
4  5  0  4  7  8
```

Problem 2.

Examine the new versions of F and R above. What is being done with the path selected from R to modify these graphs?

Problem 3.

The next path selected was $A \rightarrow D \rightarrow E \rightarrow F$ in graph R. What is the flow capacity of that path?

The resulting working graphs are these:

Graph F

```
A  B  C  D  E  F
4  3  3  4  4  4
```

Graph R

```
A  B  C  D  E  F
0  5  0  0  3  4
```

Problem 4.

We select path $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F$. What is the flow capacity of that path?

Problem 5.

The paths selected always start from node A and end with node F. What is different about these nodes compared to the others?
Here are the final working graphs F and R.

Problem 6.
At this point, the algorithm is finished. How can we know the algorithm is done by examining graph R?

Problem 7.
For nodes B, C, D, and E, what is the relationship between the in-flows and the out-flows? Why does that relationship have to exist?

Problem 8.
Using the final flow graph F above, determine the maximum flow of graph G_1.

Problem 9.
In graph F, the outflow of A is equal to the inflow of F. Should that always be the case?

Problem 10.
Node A is called a source node and node F is called a sink node. Would this technique work if there were multiple source and sink nodes? Why or why not?
Graph G_2

Now we are going to look at a case that messes up the algorithm.

![Graph G_2 Flow Graph Residual Graph](image_url)

Problem 11.
The algorithm picks path $A \rightarrow B \rightarrow C \rightarrow D$. What is the capacity of that path?

Problem 12.
Update the flow and residual graphs as a result of selecting this path.

![Flow Graph Residual Graph](image_url)

Problem 13.
Select path $A \rightarrow B \rightarrow D$ from the above residual graph. What is the capacity of that path?

Problem 14.
Update the flow and residual graphs as a result of selecting this path.
Problem 15.
Select path $A \rightarrow C \rightarrow D$. What is the capacity of that path?

Problem 16.
Update the flow and residual graphs as a result of selecting this path.

At this point, the algorithm is finished.

Problem 17.
What is the maximum network flow of G_2, according to the algorithm?

Problem 18.
Is this number correct? Why or why not? Examine G_2 to verify your answer.

Problem 19.
Suppose a maximum flow is running through G_2. What would be the flow on edge $B \rightarrow C$ in this situation? Would it change the total flow of G_2 if we deleted $B \rightarrow C$?
Graph G_3

We are going to modify the algorithm. Starting again with the previous graph, we make a new kind of residual graph. The dotted edges are added, and are legal edges to be traversed in the residual graph.

![Graph G_3](image1)

Flow Graph

Residual Graph

Problem 20.

Select path $A \rightarrow B \rightarrow C \rightarrow D$. What is the capacity of that path?

Here are the updated flow and residual graphs:

![Flow Graph](image2)

![Residual Graph](image3)

Now we select path $A \rightarrow C \rightarrow B \rightarrow D$.

Here are the updated flow and residual graphs:

![Flow Graph](image4)

![Residual Graph](image5)
Problem 21.
Our algorithm adds capacity to the reverse edges when we update the residual graph. In your own words, can you explain what the reverse edges represent?

Problem 22.
Select path $A \rightarrow B \rightarrow C \rightarrow D$. (Yes, we are repeating this path.) What are the resulting flow and residual graphs?

![Flow Graph](image1)

![Residual Graph](image2)

Problem 23.
Now we select path $A \rightarrow C \rightarrow B \rightarrow D$.
What are the updated flow and residual graphs?

![Flow Graph](image3)

![Residual Graph](image4)

Problem 24.
At this point, the algorithm should be done. Is the final network flow accurate now?
Reflection

Congratulations! You have discovered the Ford-Fulkerson method of determining the maximum flow of a network!

Problem 25.
What was the strongest aspect of your performance as a team?

Problem 26.
How could your team perform even more effectively on the next activity?

Problem 27.
What insights did you have working on this activity?