
Department of Computer Science

Data Structures and Algorithms

CS 225

Brad Solomon

April 29, 2022

Cardinality and Similarity Sketches

Learning Objectives

See how hashing is an effective tool for approximation

Demonstrate the Minhash and HyperLogLog sketches

Introduce the concept of cardinality and cardinality estimation

Cardinality

Google Index Estimate: >60 billion webpages

Google Universe Estimate (2013): >130 trillion webpages Image: https://doi.org/10.1038/nature03597

How many distinct (unique) values there are in a dataset

https://doi.org/10.1038/nature03597

Cardinality
I take cards labeled 1--1,000 and
choose a random subset of size

 to hide in my hatN

We can see one representative from the
cards in the hat; which to pick?

We want to estimate N

210

035

023

917

981

342

830

017

332

525

092

709

Minimum, median, maximum? Something else?

Cardinality

0 999
95

If minimum is 95, what's our estimate for ?N
What if minimum was 500? ...10? ... 4?

999

95 ≈ 1000/(N + 1)
N + 1 ≈ 10.5

N ≈ 9.5

Cardinality

If minimum is 95, what's our estimate for ?N

0
95

Conceptually: If we scatter points randomly across the interval, we
end up with + 1 parts, each about long

N
N 1000/(N + 1)

What if minimum was 500? ...10? ... 4?

Assuming our first ‘partition’ is about average:

Cardinality

0 1

h64(x)
264 − 1

Now imagine we have a SUHA hash (let be a 64-bit hash)h64

The randomness in the hash function turns any dataset-
cardinality problem into the “hat problem”

Cardinality

0 1

Let , where each is an independent
uniform draw between [0, 1]

M = min(X1, X2, . . . , XN) Xi

Claim: E[M] =
1

N + 1

Cardinality

0.455 0.220 0.951 0.236 0.979Attempt 1

0.968 0.234 0.835 0.642 0.349Attempt 2

0.774 0.484 0.309 0.526 0.143Attempt 3

Cardinality

Can the -smallest hash value estimate the cardinality better
than the minimum?

kth

0 1min
2nd
min

3rd
min

kth
min...

......

Cardinality

0 1

E[Mk] =
k

N + 1
E[M1] =

1
N + 1

......
M1 M2 M3 Mk

Can the -smallest hash value estimate the cardinality better
than the minimum?

kth

1
N + 1

=
E[Mk]

k

= [E[M1] + (E[M2] − E[M1]) + . . . + (E[Mk] − E[Mk−1])] ⋅
1
k

1

......

0

... ...

M1 M2 M3 MkMk−1

...

Cardinality

Cardinality

1
N + 1

=
E[Mk]

k

= [E[M1] + (E[M2] − E[M1]) + . . . + (E[Mk] − E[Mk−1])] ⋅
1
k

1

......

Averages estimates for k
1

N + 1

0

... ...

M1 M2 M3 MkMk−1

...

 minimum
value (KMV)
kth

Cardinality

True cardinality = 1,000

Cardinality

>Read 1

ATGGTTAGAATTAAACCCGG

TGCTAATAAACCUAGTGATG
>Read 2

CGATAGCACAGGTAGATCC

TACGTAGAGGTCATTAGCC
>Read 3

TACGTAGAGGTCATTAGCCG

TGCTAATAAACCUAGTGATG

Hash 0.135 0.220 0.236 0.36 0.41

Given any dataset and a SUHA hash function, we can estimate the
number of unique items by tracking the minimum hash values.

Applied Cardinalities
Real-world
Meaning

AGGCCACAGTGTATTATGACTG

||||||||||| |||||||||

AGGCCACAGTGAGTTATGACTG

AAAAAAAAAAAGATGT-AAGTA

|||||||||||||||| |||||

AAAAAAAAAAAGATGTAAAGTA

GAGG--TCAGATTCACAGCCAC

|||| ||||||||||||||||

GAGGGGTCAGATTCACAGCCAC

Set similarities

J =
|A ∩ B |
|A ∪ B |

O =
|A ∩ B |

min(|A | , |B |)

Cardinalities

|A |
|B |

|A ∪ B |
|A ∩ B |

Set Operations

A ∪ B

A ∩ B

A / B

A △ B

Union

Intersection

Difference

Symmetric difference

 = {1, 2, 3, 4}A = {3, 4, 5, 6, 7}B

Set Similarity
How can we describe how similar two sets are?

Set Similarity
How can we describe how similar two sets are?

Set Similarity
To measure similarity of & , we need both a measure of how
similar the sets are but also the total size of both sets.

A B

J =
|A ∩ B |
|A ∪ B |

 is the Jaccard coefficientJ

|A ∩ B |
|A ∪ B |

=

|A ∩ B |
|A ∪ B |

=

0 <
|A ∩ B |
|A ∪ B |

< 1

0

1

Set Similarity

 = {1, 2, 3, 4}A = {3, 4, 5, 6, 7}B

J =
|A ∩ B |
|A ∪ B |

=

Set Similarity

Set Similarity

 = {1, 2, 3, 4}A = {3, 4, 5, 6, 7}B

J =
|A ∩ B |
|A ∪ B |

=
|{3,4} |

|{1,2,3,4,5,6,7} |
=

2
7

Similarity Sketches

But what do we do when we only have a sketch?

BA

A

B

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. Mash Screen:
high-throughput sequence containment estimation for genome discovery. Genome Biol 20, 232 (2019)

Similarity Sketches

Imagine we ‘sketched’ two datasets by hashing all objects…

A

B

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. Mash Screen:
high-throughput sequence containment estimation for genome discovery. Genome Biol 20, 232 (2019)

Similarity Sketches

Claim: Under SUHA, set similarity can be estimated by sketch similarity!

Similarity Sketches

Say we find the 8 minimum hashes (bottom-8) for items in set A and B

3 7 8 11 15 17 22 23

2 3 6 7 9 11 17 23
A
B

0 8 16 24

...

Sketch A Sketch B

3 15
7 17
8 22
11 23

2 9
3 11
6 17
7 23

Similarity Sketches

To get similarity, we want to estimate and …|A ∪ B | |A ∩ B |

3 7 8 11 15 17 22 23

2 3 6 7 9 11 17 23
A
B

0 8 16 24

...

3 15
7 17
8 22

11 23

2 9
3 11
6 17
7 23

∪ =

Sketch A Sketch B

Similarity Sketches

To get similarity, we want to estimate and …|A ∪ B | |A ∩ B |

3 7 8 11 15 17 22 23

2 3 6 7 9 11 17 23
A
B

0 8 16 24

...

3 15
7 17
8 22

11 23

2 9
3 11
6 17
7 23

∪ =
2 8
3 9
6 11
7 15

Sketch A Sketch B |A ∪ B |

Similarity Sketches

To get similarity, we want to estimate and …|A ∪ B | |A ∩ B |

3 7 8 11 15 17 22 23

2 3 6 7 9 11 17 23
A
B

0 8 16 24

...

3 15
7 17
8 22

11 23

2 9
3 11
6 17
7 23

∩ =

Sketch A Sketch B

Similarity Sketches

Claim: Can approximate the intersection of our sketches as our datasets!

|A ∪ B |
2 8
3 9
6 11
7 15

|A ∩ B | ≈ |S(A ∪ B) ∩ S(A) ∩ S(B) |

2 9
3 11
6 17
7 23

Sketch A Sketch B
3 15
7 17
8 22

11 23

Inclusion-Exclusion Principle

|A ∩ B | =

Similarity Sketches

Claim: Can approximate the intersection of our sketches as our datasets!

|A ∪ B |
2 8
3 9
6 11
7 15

2 9
3 11
6 17
7 23

Sketch A Sketch B
3 15
7 17
8 22

11 23

|A | + |B | − |A ∪ B |
|A ∪ B |

=
800/23−1 + 800/23−1 − 800/15−1

800/15−1

=
34.782 + 34.782 − 53.333 − 1

53.333 − 1
≈ 0.29

th minimum value (KMV) with ,
assuming hash range is integers in [0, 100):
k k = 8

All computation here is simple

- Hash functions

- Bottom (heap / sorted list)k
- minimum value (lookup)kth

- Get union sketch (merge heaps / lists)

- Calculate Jaccard (during merge)

Similarity Sketches

Claim: Can approximate the intersection of our sketches as our datasets!

|A ∪ B |
2 8
3 9
6 11
7 15

2 9
3 11
6 17
7 23

Sketch A Sketch B
3 15
7 17
8 22

11 23

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

624 VOLUME 33 NUMBER 6 JUNE 2015 NATURE BIOTECHNOLOGY

A RT I C L E S

applied to document similarity20, image similarity22, sequence simi-
larity23–25 and metagenomic clustering26. The approach can also be
viewed as a generalization of minimizers27. Briefly, to create a sketch
for a DNA sequence, one must convert all k-mers (also known as, shin-
gles or q-grams) to integer fingerprints using multiple, randomized
hash functions. For each hash function, only the minimum valued
fingerprint, or min-mer, is retained. The collection of min-mers for
a sequence makes the sketch (Fig. 1 and Online Methods). This local-
ity-sensitive hashing allows the Jaccard similarity of two k-mer sets
to be estimated by simply computing the Hamming distance between
their sketches. The resulting estimate is strongly correlated with the
number of shared k-mers between two sequences (Supplementary
Fig. 1). Because the sketches are comparatively small, this is a com-
putationally efficient technique for estimating similarity.

RESULTS
MinHash alignment filtering
MHAP uses MinHash sketches for efficient alignment filtering. The
time required to hash, index, store and compare k-mers is propor-
tional to the sketch size, so it is preferable to keep sketches small.
However, using fewer min-mers reduces the sensitivity of the filter.
It is possible to use sketches an order of magnitude smaller than the
input reads, while maintaining acceptable overlap detection accuracy
(Fig. 2a,b). For human, using a small value of k (e.g., 10) increases the
number of false matches found, so it is preferable to use the largest
value of k that maintains sensitivity.

Specifically, 16-mers can effectively detect 2 kbp overlaps from
10 kbp reads simulated from the human genome with an overlap error
rate of 30%, so MHAP uses k = 16 by default (Fig. 2b, Supplementary
Notes 1 and 2 and Online Methods). Sensitivity can be further
improved by increasing the sketch size, which reduces the expected
error of the Jaccard estimate (Supplementary Fig. 1). Additionally,
because the error rate of an alignment is roughly additive in the
error rate of the two reads, mapping high-error reads to a reference
genome is easier than overlapping. For mapping 10 kbp reads to the
human genome with a 15% error rate, a sketch of only ~150 16-mers
is required to achieve over 80% sensitivity.

The efficiency of MHAP improves with increased read length.
Figure 2c compares the total number of k-mers counted during
MHAP overlapping with a direct approach that exactly measures the
Jaccard similarity between two reads without using sketches. For a

fixed number of total bases sequenced, and a minimum 20% overlap
length, the relative number of min-mer comparisons performed by
MHAP decays rapidly with increasing read length, because the com-
plexity is governed only by the sketch size (a constant) and the number
of reads (which decreases for increasing read length; Supplementary
Note 1 and Supplementary Table 1). Thus, the efficiency of MHAP
is expected to improve with the increasing read length and accuracy
of future long-read sequencing technologies.

MHAP overlapping performance
In addition to being fast, MHAP is also a highly sensitive overlap-
per. We evaluated the sensitivity and specificity of MHAP versus two
other tools designed for SMRT reads, BLASR28 and DALIGNER29.
BWA-MEM30, SNAP31 and RazerS32 were also evaluated, but current
versions of these algorithms did not reliably detect noisy overlaps
between all pairs of reads (Supplementary Note 3). The performance
of MHAP, BLASR and DALIGNER was evaluated by comparing
detected overlaps to true overlaps, which were inferred from map-
ping reads to reference genomes, and the tools were evaluated using
multiple parameter settings and sequencing chemistries (Table 1,
Supplementary Tables 2 and 3 and Supplementary Figs. 2 and 3
and Online Methods).

MHAP sensitivity is tunable based on the size of k, the sketch size
and the Jaccard similarity threshold. Based on the parameter sweep
(Supplementary Table 2) and empirical assembly tests, two MHAP
parameter settings (fast and sensitive) were chosen that balanced
speed with accuracy (Table 1 and Supplementary Note 2). BLASR
sensitivity is primarily affected by the bestn parameter, which con-
trols how many alignments are reported for each read. The HGAP15
assembler sets bestn equal to the depth of sequencing coverage, but
this can result in missed overlaps for repetitive genomes. BLASR
runtime and sensitivity was highly genome-dependent and affected
by sequence complexity and uneven replicon coverage (Table 1).
Like BWA-MEM, BLASR was originally designed for mapping
to a reference and is not ideally suited for overlapping all pairs
of reads. In contrast, MHAP considers all possible alignments; it
was consistently accurate across all genomes tested and an order of
magnitude faster than BLASR at all levels of sensitivity
(Supplementary Figs. 2 and 3).

Like MHAP, DALIGNER utilizes efficient k-mer matching to detect
long-read overlaps. Although developed for the Dazzler assembler,

19

S1 : : S2

14 57 36

a

b

c

d
e

14 57 36 19
58 37 16 15
40 23 2 61
33 28 11 54
5 48 47 26

22 1 60 43
24 7 50 45
33 28 11 54
5 48 47 26

20 3 62 41
18 13 56 39

[5, 1, 6, 6]
Sketch (S2)

min-mers

36 19 14 57
18 13 56 39
11 54 33 28
44 27 6 49
49 44 27 6
5 48 47 26

22 1 60 43
24 7 50 45
35 30 9 52
13 56 39 18
54 33 28 11
27 6 49 44

[5, 1, 2, 15]
Sketch (S1)

J (S1, S2) ≈ 2/4 = 0.5

S1 :

S2 :

�1 �2 �3 �4 �1 �2 �3 �4

Figure 1 Rapid overlapping of noisy reads using MinHash sketches.
(a) To create a MinHash sketch of a DNA sequence S, we first decomposed
the sequence into its constituent k-mers. In the example shown, k = 3,
resulting in 12 k-mers each for S1 and S2. (b) All k-mers are then
converted to integer fingerprints by multiple hash functions. The number
of hash functions determines the resulting sketch size H. Here, where
H = 4, four independent hash sets are generated for each sequence
('1…H). In MHAP, after the initial hash ('1), subsequent fingerprints are
generated using an XORShift pseudo-random number generator ('2…H).
The k-mer generating the minimum value for each hash is referred to as
the min-mer for that hash. (c) The sketch of a sequence is composed
of the ordered set of its H min-mer fingerprints, which is much smaller
than the set of all k-mers. In this example, the sketches of S1 and S2
share the same minimum fingerprints (underlined) for '1 and '2. (d) The
fraction of entries shared between the sketches of two sequences S1 and
S2 (0.5) serves as an estimate of their true Jaccard similarity (0.22), with
the error bound controlled by H. In practice, H >> 4 is required to obtain
accurate estimates. (e) If sufficient similarity is detected between two
sketches, the shared min-mers (ACC and CCG in this case) are located
in the original sequences and the median difference in their positions is
computed to determine the overlap offset (0) for S1 and S2.

2) Multiple hash functions
(Γ) map kmers to values.

1) Sequence decomposed
into kmers

3) The smallest values for
each hash function is chosen
4) The Jaccard similarity can
be estimated by the overlap
in the Minimum Hashes
(Minhash) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

Berlin et al (2015) Nature Biotechnology

Minhash in practice

Mash: fast genome and metagenome distance estimation using MinHash
Ondov et al (2016) Genome Biology

Sketching Summary

Does my object exist in a set?

How often is a particular value repeated?

If my dataset is too large to handle, I can still answer many questions:

How many unique objects do I have?

How similar are two datasets?

Bonus Slides (Taking it one step further…)

Bottom-k minhash has low accuracy if the cardinality of sets are skewed

Ondov, Brian D., Gabriel J. Starrett, Anna Sappington, Aleksandra Kostic, Sergey Koren,
Christopher B. Buck, and Adam M. Phillippy. Mash Screen: High-throughput sequence
containment estimation for genome discovery. Genome biology 20.1 (2019): 1-13.

K-Partition Minhash

A

B

What if we instead took the minimum of k-partitions?

K-Partition Minhash

1010110101
0001111010
1101101011
1011010110
0101100000
0010001101

Hash

00
01111010
10001101

01

10

11

01100000

10110101
11010110

01101011

Partition

HyperLogLog
Instead of minimum, say we use log-minimum

min
0x030F6556 ⌊log2⌋ 25

HyperLogLog

min
0x030F6556 ⌊log2⌋ 25

Estimate is of ; can re-exponentiate later, but
with added variance & bias

⌊log2 n⌋

Representatives take rather
than bits

log log U
log UPro:

Con:

32 bits

6 x 5 bits

HyperLogLog

HLLInput items

11110011111100111111001111110011001 01001

110 00001...

...

Hash values

🎈🎾⛺🎾💾
🍷🍷🍷🍗💾

...

...
🍗🍎💾🍗💾

Register 000

01001 10001
10101 10110

00100

Register 001

00100 10110
01011 10101
00010 01011
11111 11110

Register 010

Register 011

Register 111

...

Hash
Take
prefix

Cardinality
Estimate

3

2 ~ 22

~ 23

...

...
......

p q

... ...

... ...

Overall
Estimate

Baker DN, Langmead B. Dashing: fast and accurate genomic distances with HyperLogLog.
In press, Genome Biology.

1. k-partition
3. Re-exponentiation

4. Averaging,

 bias correction

2. ⌊log2n⌋

HyperLogLog

HLL

≈ |A|

HLL HLL HLL

max(,) =

HLL

≈ |B| ≈ |A ∪ B|

HLL HLL

compare(,) = ≈ |A ∩ B|

Tally

A > B: 43
A = B: 78
A < B: 48

(a)

(c)

(b)

Union and intersection cardinalities can be estimated
directly. No need for .|A ∩ B | ≈ |S(A ∪ B) ∩ S(A) ∩ S(B) |

HLL

≈ |A|

HLL HLL HLL

max(,) =

HLL

≈ |B| ≈ |A ∪ B|

HLL HLL

compare(,) = ≈ |A ∩ B|

Tally

A > B: 43
A = B: 78
A < B: 48

(a)

(c)

(b)

HyperLogLog

HLL handles lopsided sets
better than bottom-k
MinHash 1,2

1. Koslicki, David, and Hooman Zabeti. Improving
MinHash via the containment index with applications
to metagenomic analysis. Applied Mathematics and
Computation 354 (2019): 206-215.

2. Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck
CB, Phillippy AM. Mash Screen: high-throughput sequence
containment estimation for genome discovery. Genome
Biol 20, 232 (2019)

MinHash

HLL

J = 0.111

| J
−

̂ J|
log2(sketch bytes)

HyperLogLog

HLLInput items

11110011111100111111001111110011001 01001

110 00001...

...

Hash values

🎈🎾⛺🎾💾
🍷🍷🍷🍗💾

...

...
🍗🍎💾🍗💾

Register 000

01001 10001
10101 10110

00100

Register 001

00100 10110
01011 10101
00010 01011
11111 11110

Register 010

Register 011

Register 111

...

Hash
Take
prefix

Cardinality
Estimate

3

2 ~ 22

~ 23

...

...
......

p q

... ...

... ...
Overall

Estimate

Baker, Daniel et al. "Dashing: fast and accurate genomic distances with HyperLogLog." Genome biology 20.1 (2019): 1-12.

