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Counting and Cardinality Sketches



Last POTD today! No labs this week!



Learning Objectives

Discuss strategies for counting the occurrences of objects

Introduce the concept of cardinality and cardinality estimation

Review and finalize fundamentals of bloom filters



Sketch

A “sketch” is a compact (reduced) representation of a dataset that acts as a 
replacement for calculations. 



Bloom Filters

Optimal accuracy when:

, number of hash functionsk
, expected number of insertionsn
, filter size in bitsm
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Has three key properties: 
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Bloom Filter: Website Caching

Maggs, Bruce M., and Ramesh K. Sitaraman. Algorithmic nuggets in content delivery. ACM SIGCOMM Computer Communication Review 45.3 (2015): 52-66.
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Loaded this before?

Cache this page!

Add to filter (but don’t cache!)



Sequence Bloom Trees

ATGGTTAGAATTAAACCCGG 
TGCTAATAAACCUAGTGATG

CGATAGCACAGGTAGATCC 
TACGTAGAGGTCATTAGCC

….

TACGTAGAGGTCATTAGCCG 
TGCTAATAAACCUAGTGATG

Imagine we have a large collection of text…

And our goal is to search these files 
for a query of interest…



Sequence Bloom Trees

GTATGCACGCGATAG
TAGCATTGCGAGACG
TGTCTTTGATTCCTG
GACGCTGGAGCCGGA
TATCGCACCTACGTT

GTATGCACGCGATAG
GCGAGACGCTGGAGC
CCTACGTTCAATATT
GACGCTGGAGCCGGA
TATCGCACCTACGTT
CACGGGAGCTCTCCA

CACGGGAGCTCTCCA

0 1
1 0
2 1
3 1
4 0
5 0
6 1
7 0
8 0
9 1



Bloom filter

SRA 00001 SRA 00002 SRA 00003 SRA 00004 SRA 00005 SRA 00006 SRA 00007 SRA 00008

Sequence Bloom Trees



Bloom Filters: Unioning

0 1
1 0
2 1
3 1
4 0
5 0
6 1
7 0
8 0
9 1

0 0
1 1
2 1
3 0
4 0
5 0
6 1
7 1
8 1
9 1

Bloom filters can be trivially merged using bit-wise union.
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Sequence Bloom Trees

Bloom filter

SRA 00001 SRA 00002 SRA 00003 SRA 00004 SRA 00005 SRA 00006 SRA 00007 SRA 00008

Are ≥ θ fraction of query 
kmers ∈ this Bloom filter? 

If YES, move to children

If NO, stop looking 
at this subtree 

(Global mismatch)

X X X X XXX



Sequence Bloom Trees
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approach (Supplementary Fig. 2). These queries were performed over 
varying sensitivity threshold Q (the minimum fraction of query k-mers 
that must exist in order to return a ‘hit’) as well as the transcripts per 
million (TPM) threshold used to select the query set (Supplementary 
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on 
queries that were not expressed in any experiment (Supplementary 
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST, 
by first ruling out experiments in which the query sequences are not 
present. This allows the subsequent processing time to scale with the 
size of the number of hits rather than the size of the database. We 
first used SBTs to filter the full dataset consisting of 2,652 human 
blood, breast and brain RNA-seq experiments. We then compared 
the performance of STAR or SRA-BLAST on the filtered dataset with 
the time to process the unfiltered dataset with these algorithms. Using 
SBTs to first filter the data reduced the overall query time of STAR or 
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments 
returned by SBT with those in which the query sequence was estimated 
to be expressed using Sailfish20. Because it is impractical to use existing 
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files 
on which we ran Sailfish (Fig. 2). Three collections of representative 
queries were constructed using Sailfish, denoted by High, Medium and 
Low, which included transcripts of length >1,000 nt that were likely to 
be expressed at a higher, medium or low level in at least one experiment 
contained in the set of 100 experiments on which Sailfish was run. The 
High set was chosen to be 100 random transcripts with an estimated 
abundance of >1,000 TPM in at least one experiment. The Medium and 
Low query sets were similarly chosen randomly from among transcripts 
with >500 and >100 TPM, respectively. These Sailfish estimates were 
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch 
between SBT’s definition of present (coverage of k-mers over a sufficient 
fraction of the query) and Sailfish’s definition of expressed (as estimated  

by read mapping and an expectation-maximization inference). These 
two definitions are related, but not perfectly aligned, resulting in some 
disagreement that is quantified by the false-positive rates (FPR) and 
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no 
results but their expression is above the TPM threshold as estimated 
by Sailfish. This is supported by the fact that the average true-positive 
rate at Q = 0.7 for queries that return at least one file was 96–100%, 
and the median true-positive rate across all queries was 100% for all 
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs 
for the expression of all 214,293 known human transcripts and used these 
results to identify tissue-specific transcripts (Supplementary Table 5 
and Supplementary Fig. 7). This search took 3.3 d using a single thread 
(Supplementary Fig. 8). There are presently no search or alignment 
tools that can solve this scale of sequence search problem in a reasonable 
time frame, but we estimate an equivalent search using Sailfish would 
take 92 d. The speed and computational efficiency of SBTs will enable 
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and 
metagenomic collections as well. Researchers could search for conditions 
from among thousands that are likely to express a given novel isoform or 
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make 
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a 
particular research question from available sequencing experiments. 
Individual hospitals, sequencing centers, research consortia and 
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to 
find the relevant conditions for further study. SBTs enable the efficient 
mining of these data and could be used to uncover biological insights 
that can be revealed only through the analysis of multiple data sets from 
different sources. Furthermore, SBTs do not require prior knowledge 
about sequences of interest, making it possible to identify, for example, 
the expression of unknown isoforms or long noncoding RNAs. This 
algorithm makes it practical to search large sequencing repositories and 
may open up new uses for these rich collections of data.
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Figure 1 Estimated running times of search tools for one transcript. The 
SBT per-query time was recorded using a maximum of a single filter in 
active memory and one thread. The other bars show the estimated time to 
achieve the same query results using SRA-BLAST and STAR.
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Figure 2 Receiver operating characteristic (ROC) curve averaged over 
100 queries with estimated expression >100, >500 and >1,000 TPM 
and variable Q (Online Methods). Solid lines represent mean true-positive 
and false-positive rates, dashed lines represent the median rates on the 
same experiments. Relaxing Q leads to a higher sensitivity at the cost of 
specificity. In more than half of all queries, 100% of true-positive hits can 
be found with Q as high as 0.9.
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approach (Supplementary Fig. 2). These queries were performed over 
varying sensitivity threshold Q (the minimum fraction of query k-mers 
that must exist in order to return a ‘hit’) as well as the transcripts per 
million (TPM) threshold used to select the query set (Supplementary 
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on 
queries that were not expressed in any experiment (Supplementary 
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST, 
by first ruling out experiments in which the query sequences are not 
present. This allows the subsequent processing time to scale with the 
size of the number of hits rather than the size of the database. We 
first used SBTs to filter the full dataset consisting of 2,652 human 
blood, breast and brain RNA-seq experiments. We then compared 
the performance of STAR or SRA-BLAST on the filtered dataset with 
the time to process the unfiltered dataset with these algorithms. Using 
SBTs to first filter the data reduced the overall query time of STAR or 
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments 
returned by SBT with those in which the query sequence was estimated 
to be expressed using Sailfish20. Because it is impractical to use existing 
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files 
on which we ran Sailfish (Fig. 2). Three collections of representative 
queries were constructed using Sailfish, denoted by High, Medium and 
Low, which included transcripts of length >1,000 nt that were likely to 
be expressed at a higher, medium or low level in at least one experiment 
contained in the set of 100 experiments on which Sailfish was run. The 
High set was chosen to be 100 random transcripts with an estimated 
abundance of >1,000 TPM in at least one experiment. The Medium and 
Low query sets were similarly chosen randomly from among transcripts 
with >500 and >100 TPM, respectively. These Sailfish estimates were 
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch 
between SBT’s definition of present (coverage of k-mers over a sufficient 
fraction of the query) and Sailfish’s definition of expressed (as estimated  

by read mapping and an expectation-maximization inference). These 
two definitions are related, but not perfectly aligned, resulting in some 
disagreement that is quantified by the false-positive rates (FPR) and 
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no 
results but their expression is above the TPM threshold as estimated 
by Sailfish. This is supported by the fact that the average true-positive 
rate at Q = 0.7 for queries that return at least one file was 96–100%, 
and the median true-positive rate across all queries was 100% for all 
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs 
for the expression of all 214,293 known human transcripts and used these 
results to identify tissue-specific transcripts (Supplementary Table 5 
and Supplementary Fig. 7). This search took 3.3 d using a single thread 
(Supplementary Fig. 8). There are presently no search or alignment 
tools that can solve this scale of sequence search problem in a reasonable 
time frame, but we estimate an equivalent search using Sailfish would 
take 92 d. The speed and computational efficiency of SBTs will enable 
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and 
metagenomic collections as well. Researchers could search for conditions 
from among thousands that are likely to express a given novel isoform or 
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make 
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a 
particular research question from available sequencing experiments. 
Individual hospitals, sequencing centers, research consortia and 
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to 
find the relevant conditions for further study. SBTs enable the efficient 
mining of these data and could be used to uncover biological insights 
that can be revealed only through the analysis of multiple data sets from 
different sources. Furthermore, SBTs do not require prior knowledge 
about sequences of interest, making it possible to identify, for example, 
the expression of unknown isoforms or long noncoding RNAs. This 
algorithm makes it practical to search large sequencing repositories and 
may open up new uses for these rich collections of data.
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Figure 1 Estimated running times of search tools for one transcript. The 
SBT per-query time was recorded using a maximum of a single filter in 
active memory and one thread. The other bars show the estimated time to 
achieve the same query results using SRA-BLAST and STAR.
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Figure 2 Receiver operating characteristic (ROC) curve averaged over 
100 queries with estimated expression >100, >500 and >1,000 TPM 
and variable Q (Online Methods). Solid lines represent mean true-positive 
and false-positive rates, dashed lines represent the median rates on the 
same experiments. Relaxing Q leads to a higher sensitivity at the cost of 
specificity. In more than half of all queries, 100% of true-positive hits can 
be found with Q as high as 0.9.

>2.5 years

©
20

16
N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.

2 ADVANCE ONLINE PUBLICATION   NATURE BIOTECHNOLOGY

A N A LY S I S

approach (Supplementary Fig. 2). These queries were performed over 
varying sensitivity threshold Q (the minimum fraction of query k-mers 
that must exist in order to return a ‘hit’) as well as the transcripts per 
million (TPM) threshold used to select the query set (Supplementary 
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on 
queries that were not expressed in any experiment (Supplementary 
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST, 
by first ruling out experiments in which the query sequences are not 
present. This allows the subsequent processing time to scale with the 
size of the number of hits rather than the size of the database. We 
first used SBTs to filter the full dataset consisting of 2,652 human 
blood, breast and brain RNA-seq experiments. We then compared 
the performance of STAR or SRA-BLAST on the filtered dataset with 
the time to process the unfiltered dataset with these algorithms. Using 
SBTs to first filter the data reduced the overall query time of STAR or 
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments 
returned by SBT with those in which the query sequence was estimated 
to be expressed using Sailfish20. Because it is impractical to use existing 
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files 
on which we ran Sailfish (Fig. 2). Three collections of representative 
queries were constructed using Sailfish, denoted by High, Medium and 
Low, which included transcripts of length >1,000 nt that were likely to 
be expressed at a higher, medium or low level in at least one experiment 
contained in the set of 100 experiments on which Sailfish was run. The 
High set was chosen to be 100 random transcripts with an estimated 
abundance of >1,000 TPM in at least one experiment. The Medium and 
Low query sets were similarly chosen randomly from among transcripts 
with >500 and >100 TPM, respectively. These Sailfish estimates were 
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch 
between SBT’s definition of present (coverage of k-mers over a sufficient 
fraction of the query) and Sailfish’s definition of expressed (as estimated  

by read mapping and an expectation-maximization inference). These 
two definitions are related, but not perfectly aligned, resulting in some 
disagreement that is quantified by the false-positive rates (FPR) and 
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no 
results but their expression is above the TPM threshold as estimated 
by Sailfish. This is supported by the fact that the average true-positive 
rate at Q = 0.7 for queries that return at least one file was 96–100%, 
and the median true-positive rate across all queries was 100% for all 
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs 
for the expression of all 214,293 known human transcripts and used these 
results to identify tissue-specific transcripts (Supplementary Table 5 
and Supplementary Fig. 7). This search took 3.3 d using a single thread 
(Supplementary Fig. 8). There are presently no search or alignment 
tools that can solve this scale of sequence search problem in a reasonable 
time frame, but we estimate an equivalent search using Sailfish would 
take 92 d. The speed and computational efficiency of SBTs will enable 
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and 
metagenomic collections as well. Researchers could search for conditions 
from among thousands that are likely to express a given novel isoform or 
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make 
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a 
particular research question from available sequencing experiments. 
Individual hospitals, sequencing centers, research consortia and 
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to 
find the relevant conditions for further study. SBTs enable the efficient 
mining of these data and could be used to uncover biological insights 
that can be revealed only through the analysis of multiple data sets from 
different sources. Furthermore, SBTs do not require prior knowledge 
about sequences of interest, making it possible to identify, for example, 
the expression of unknown isoforms or long noncoding RNAs. This 
algorithm makes it practical to search large sequencing repositories and 
may open up new uses for these rich collections of data.
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Figure 1 Estimated running times of search tools for one transcript. The 
SBT per-query time was recorded using a maximum of a single filter in 
active memory and one thread. The other bars show the estimated time to 
achieve the same query results using SRA-BLAST and STAR.
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Figure 2 Receiver operating characteristic (ROC) curve averaged over 
100 queries with estimated expression >100, >500 and >1,000 TPM 
and variable Q (Online Methods). Solid lines represent mean true-positive 
and false-positive rates, dashed lines represent the median rates on the 
same experiments. Relaxing Q leads to a higher sensitivity at the cost of 
specificity. In more than half of all queries, 100% of true-positive hits can 
be found with Q as high as 0.9.
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approach (Supplementary Fig. 2). These queries were performed over 
varying sensitivity threshold Q (the minimum fraction of query k-mers 
that must exist in order to return a ‘hit’) as well as the transcripts per 
million (TPM) threshold used to select the query set (Supplementary 
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on 
queries that were not expressed in any experiment (Supplementary 
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST, 
by first ruling out experiments in which the query sequences are not 
present. This allows the subsequent processing time to scale with the 
size of the number of hits rather than the size of the database. We 
first used SBTs to filter the full dataset consisting of 2,652 human 
blood, breast and brain RNA-seq experiments. We then compared 
the performance of STAR or SRA-BLAST on the filtered dataset with 
the time to process the unfiltered dataset with these algorithms. Using 
SBTs to first filter the data reduced the overall query time of STAR or 
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments 
returned by SBT with those in which the query sequence was estimated 
to be expressed using Sailfish20. Because it is impractical to use existing 
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files 
on which we ran Sailfish (Fig. 2). Three collections of representative 
queries were constructed using Sailfish, denoted by High, Medium and 
Low, which included transcripts of length >1,000 nt that were likely to 
be expressed at a higher, medium or low level in at least one experiment 
contained in the set of 100 experiments on which Sailfish was run. The 
High set was chosen to be 100 random transcripts with an estimated 
abundance of >1,000 TPM in at least one experiment. The Medium and 
Low query sets were similarly chosen randomly from among transcripts 
with >500 and >100 TPM, respectively. These Sailfish estimates were 
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch 
between SBT’s definition of present (coverage of k-mers over a sufficient 
fraction of the query) and Sailfish’s definition of expressed (as estimated  

by read mapping and an expectation-maximization inference). These 
two definitions are related, but not perfectly aligned, resulting in some 
disagreement that is quantified by the false-positive rates (FPR) and 
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no 
results but their expression is above the TPM threshold as estimated 
by Sailfish. This is supported by the fact that the average true-positive 
rate at Q = 0.7 for queries that return at least one file was 96–100%, 
and the median true-positive rate across all queries was 100% for all 
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs 
for the expression of all 214,293 known human transcripts and used these 
results to identify tissue-specific transcripts (Supplementary Table 5 
and Supplementary Fig. 7). This search took 3.3 d using a single thread 
(Supplementary Fig. 8). There are presently no search or alignment 
tools that can solve this scale of sequence search problem in a reasonable 
time frame, but we estimate an equivalent search using Sailfish would 
take 92 d. The speed and computational efficiency of SBTs will enable 
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and 
metagenomic collections as well. Researchers could search for conditions 
from among thousands that are likely to express a given novel isoform or 
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make 
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a 
particular research question from available sequencing experiments. 
Individual hospitals, sequencing centers, research consortia and 
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to 
find the relevant conditions for further study. SBTs enable the efficient 
mining of these data and could be used to uncover biological insights 
that can be revealed only through the analysis of multiple data sets from 
different sources. Furthermore, SBTs do not require prior knowledge 
about sequences of interest, making it possible to identify, for example, 
the expression of unknown isoforms or long noncoding RNAs. This 
algorithm makes it practical to search large sequencing repositories and 
may open up new uses for these rich collections of data.
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Figure 1 Estimated running times of search tools for one transcript. The 
SBT per-query time was recorded using a maximum of a single filter in 
active memory and one thread. The other bars show the estimated time to 
achieve the same query results using SRA-BLAST and STAR.
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Figure 2 Receiver operating characteristic (ROC) curve averaged over 
100 queries with estimated expression >100, >500 and >1,000 TPM 
and variable Q (Online Methods). Solid lines represent mean true-positive 
and false-positive rates, dashed lines represent the median rates on the 
same experiments. Relaxing Q leads to a higher sensitivity at the cost of 
specificity. In more than half of all queries, 100% of true-positive hits can 
be found with Q as high as 0.9.
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Counting Sketches
3201
946

5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
3887
8499
8970
3921
8925
4859

Sometimes we need more information than 
‘presence/absence’…



Counting Bloom Filters
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Instead of using one bit per register, lets use multiple!



Counting Bloom Filters

0
1
2
3
4
5
6

S = { 16, 8, 4, 13, 29, 11, 22 } 

h1(k) = k % 7 h2(k) = 2k+1 % 7



S = { 16, 8, 4, 13, 29, 11, 22 } 

h1(k) = k % 7 h2(k) = 2k+1 % 7

0 0
1 3
2 3
3 3
4 2
5 1
6 2

_find(3)

_find(5)

Counting Bloom Filters



S = { 16, 8, 4, 13, 29, 11, 22 } 

h1(k) = k % 7 h2(k) = 2k+1 % 7

0 0
1 3
2 3
3 3
4 2
5 1
6 2

_delete(5)

_delete(8)

Counting Bloom Filters



Counting Bloom Filters

000
110
010
001
100
110
000
000
100
111

, number of hash functionsk
, expected number of insertionsn
, filter size in registersm

h{1,2,3,...,k}A probabilistic data structure storing a set of values

Has four key properties: 

, number of bits per registerb

Can handle deletions at the cost of allowing false negatives!



Pro:

Con:

Counting Bloom Filters



Counting Bloom Filters
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0

At time of insertion, what information do we have?



Minimal Increase

0
1
2
3
4
5
6

S = { 1, 3, 5, 8 } 

h1(k) = k % 5 h2(k) = 3k+1 % 5 h3(k) = |k - 4| % 5

0
1
2
3
4
5
6

Naive Minimal Increase



0 3
1 4
2 0
3 3
4 2
5 0
6 0

S = { 1, 3, 5, 8 } 

h1(k) = k % 5 h2(k) = 3k+1 % 5 h3(k) = |k - 4| % 5

0 2
1 2
2 0
3 2
4 2
5 0
6 0

Naive Minimal Increase

_find(3)

_find(5)

_find(8)

Minimal Increase



Counting Bloom Filters
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4
2
1
4
6
8
7
2
0

Do we know anything about our collision frequency at insertion?



Spectral Bloom Filter
A counting bloom filter with two key optimizations:

1) Minimal Increase: On insert, only increment counts that have 
the minimum value.

2) Recurring Minimum: Insertions that have only a single 
minimum value have unusually high collision likelihood!

For these values, create a second spectral bloom filter and store 
them in both.
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The hidden problem with bloom filters…



Bloom Filter: Optimal Parameters

k* = ln 2 ⋅
m
n

Given any two values, we can optimize the third

… but we often have to guess an approximate value for !n



Cardinality
3201
946

5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
5598
8499
8970
3921
8575
4859
4960

42
6901
4336
9228
3317
399

6925
2660

Cardinality: how many distinct values 
in a data stream?



Cardinality
I take cards labeled 1--1,000 and 
choose a random subset of size 

 to hide in my hatN

We can see one representative from the 
cards in the hat; which to pick?

We want to estimate N

21
0

03
5

02
3

91
7

98
1

34
2

83
0

01
7

33
2

52
5

09
2

70
9

Minimum, median, maximum?  Something else?



Cardinality

0 999
95

If minimum is 95, what's our estimate for ?N
What if minimum was 500? ...10? ... 4?



999

95 ≈ 1000/(N + 1)
N + 1 ≈ 10.5

N ≈ 9.5

Cardinality

If minimum is 95, what's our estimate for ?N

0
95

Conceptually: If we scatter  points randomly across the interval,  we 
end up with  + 1 parts, each about  long

N
N 1000/(N + 1)

What if minimum was 500? ...10? ... 4?

Assuming our first ‘partition’ is about average:



Cardinality

0 1

h64(x)
264 − 1

Now imagine we have a SUHA hash (let  be a 64-bit hash)h64

The randomness in the hash function turns any dataset-
cardinality problem into the “hat problem”



Cardinality

0 1

Let , where each  is an independent 
uniform draw between [0, 1]

M = min(X1, X2, . . . , XN) Xi

Claim: E[M] =
1

N + 1



Cardinality

0.455 0.220 0.951 0.236 0.979Attempt 1

0.968 0.234 0.835 0.642 0.349Attempt 2

0.774 0.484 0.309 0.526 0.143Attempt 3



Cardinality

Can the -smallest hash value estimate the cardinality better 
than the minimum?

kth

0 1min
2nd 
min

3rd 
min

kth 
min...

......



Cardinality

0 1

......
M1 M2 M3 Mk

Can the -smallest hash value estimate the cardinality better 
than the minimum?

kth



Cardinality

0 1

E[Mk] =
k

N + 1
E[M1] =

1
N + 1

......
M1 M2 M3 Mk

Can the -smallest hash value estimate the cardinality better 
than the minimum?

kth



1
N + 1

=
E[Mk]

k

= [E[M1] + (E[M2] − E[M1]) + . . . + (E[Mk] − E[Mk−1])] ⋅
1
k

1

......

0

... ...

M1 M2 M3 MkMk−1

...

Cardinality



Cardinality

1
N + 1

=
E[Mk]

k

= [E[M1] + (E[M2] − E[M1]) + . . . + (E[Mk] − E[Mk−1])] ⋅
1
k

1

......

Averages  estimates for k
1

N + 1

0

... ...

M1 M2 M3 MkMk−1

...

 minimum 
value (KMV)
kth



Cardinality

True cardinality = 1,000


