
Department of Computer Science

Data Structures and Algorithms

CS 225

Brad Solomon

April 27, 2022

Counting and Cardinality Sketches

Last POTD today! No labs this week!

Learning Objectives

Discuss strategies for counting the occurrences of objects

Introduce the concept of cardinality and cardinality estimation

Review and finalize fundamentals of bloom filters

Sketch

A “sketch” is a compact (reduced) representation of a dataset that acts as a
replacement for calculations.

Bloom Filters

Optimal accuracy when:

, number of hash functionsk
, expected number of insertionsn
, filter size in bitsm

h{1,2,3,...,k}A probabilistic data structure storing a set of values

Has three key properties:

k* = ln 2 ⋅
m
n

Expected false positive rate: (1 − (1 −
1
m)

nk

)
k

≈ (1 − e
−nk
m)

k

Bloom Filter: Website Caching

Maggs, Bruce M., and Ramesh K. Sitaraman. Algorithmic nuggets in content delivery. ACM SIGCOMM Computer Communication Review 45.3 (2015): 52-66.

0
1
0
1
0
1

Loaded this before?

Cache this page!

Add to filter (but don’t cache!)

Sequence Bloom Trees

ATGGTTAGAATTAAACCCGG

TGCTAATAAACCUAGTGATG

CGATAGCACAGGTAGATCC

TACGTAGAGGTCATTAGCC

….

TACGTAGAGGTCATTAGCCG

TGCTAATAAACCUAGTGATG

Imagine we have a large collection of text…

And our goal is to search these files
for a query of interest…

Sequence Bloom Trees

GTATGCACGCGATAG
TAGCATTGCGAGACG
TGTCTTTGATTCCTG
GACGCTGGAGCCGGA
TATCGCACCTACGTT

GTATGCACGCGATAG
GCGAGACGCTGGAGC
CCTACGTTCAATATT
GACGCTGGAGCCGGA
TATCGCACCTACGTT
CACGGGAGCTCTCCA

CACGGGAGCTCTCCA

0 1
1 0
2 1
3 1
4 0
5 0
6 1
7 0
8 0
9 1

Bloom filter

SRA 00001 SRA 00002 SRA 00003 SRA 00004 SRA 00005 SRA 00006 SRA 00007 SRA 00008

Sequence Bloom Trees

Bloom Filters: Unioning

0 1
1 0
2 1
3 1
4 0
5 0
6 1
7 0
8 0
9 1

0 0
1 1
2 1
3 0
4 0
5 0
6 1
7 1
8 1
9 1

Bloom filters can be trivially merged using bit-wise union.

0
1
2
3
4
5
6
7
8
9

U =

Sequence Bloom Trees

Bloom filter

SRA 00001 SRA 00002 SRA 00003 SRA 00004 SRA 00005 SRA 00006 SRA 00007 SRA 00008

Are ≥ θ fraction of query
kmers ∈ this Bloom filter?

If YES, move to children

If NO, stop looking
at this subtree

(Global mismatch)

X X X X XXX

Sequence Bloom Trees

©
20

16
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

2 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

A N A LY S I S

approach (Supplementary Fig. 2). These queries were performed over
varying sensitivity threshold Q (the minimum fraction of query k-mers
that must exist in order to return a ‘hit’) as well as the transcripts per
million (TPM) threshold used to select the query set (Supplementary
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on
queries that were not expressed in any experiment (Supplementary
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST,
by first ruling out experiments in which the query sequences are not
present. This allows the subsequent processing time to scale with the
size of the number of hits rather than the size of the database. We
first used SBTs to filter the full dataset consisting of 2,652 human
blood, breast and brain RNA-seq experiments. We then compared
the performance of STAR or SRA-BLAST on the filtered dataset with
the time to process the unfiltered dataset with these algorithms. Using
SBTs to first filter the data reduced the overall query time of STAR or
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments
returned by SBT with those in which the query sequence was estimated
to be expressed using Sailfish20. Because it is impractical to use existing
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files
on which we ran Sailfish (Fig. 2). Three collections of representative
queries were constructed using Sailfish, denoted by High, Medium and
Low, which included transcripts of length >1,000 nt that were likely to
be expressed at a higher, medium or low level in at least one experiment
contained in the set of 100 experiments on which Sailfish was run. The
High set was chosen to be 100 random transcripts with an estimated
abundance of >1,000 TPM in at least one experiment. The Medium and
Low query sets were similarly chosen randomly from among transcripts
with >500 and >100 TPM, respectively. These Sailfish estimates were
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch
between SBT’s definition of present (coverage of k-mers over a sufficient
fraction of the query) and Sailfish’s definition of expressed (as estimated

by read mapping and an expectation-maximization inference). These
two definitions are related, but not perfectly aligned, resulting in some
disagreement that is quantified by the false-positive rates (FPR) and
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no
results but their expression is above the TPM threshold as estimated
by Sailfish. This is supported by the fact that the average true-positive
rate at Q = 0.7 for queries that return at least one file was 96–100%,
and the median true-positive rate across all queries was 100% for all
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs
for the expression of all 214,293 known human transcripts and used these
results to identify tissue-specific transcripts (Supplementary Table 5
and Supplementary Fig. 7). This search took 3.3 d using a single thread
(Supplementary Fig. 8). There are presently no search or alignment
tools that can solve this scale of sequence search problem in a reasonable
time frame, but we estimate an equivalent search using Sailfish would
take 92 d. The speed and computational efficiency of SBTs will enable
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and
metagenomic collections as well. Researchers could search for conditions
from among thousands that are likely to express a given novel isoform or
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a
particular research question from available sequencing experiments.
Individual hospitals, sequencing centers, research consortia and
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to
find the relevant conditions for further study. SBTs enable the efficient
mining of these data and could be used to uncover biological insights
that can be revealed only through the analysis of multiple data sets from
different sources. Furthermore, SBTs do not require prior knowledge
about sequences of interest, making it possible to identify, for example,
the expression of unknown isoforms or long noncoding RNAs. This
algorithm makes it practical to search large sequencing repositories and
may open up new uses for these rich collections of data.

107

106

105

104

103

102

101

SBT

SRA-B
LA

ST
STA

R

(C
PU tim

e) STA
R

(15
-th

re
ad

)

Ti
m

e
(m

in
)

Figure 1 Estimated running times of search tools for one transcript. The
SBT per-query time was recorded using a maximum of a single filter in
active memory and one thread. The other bars show the estimated time to
achieve the same query results using SRA-BLAST and STAR.

1.0

0.9

0.8 0.7

TPM
100
500
1,000

0.6 0.5

0.8

0.6

0.4

0.2

0
0

� = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Tr
ue

 p
os

iti
ve

False positive

Figure 2 Receiver operating characteristic (ROC) curve averaged over
100 queries with estimated expression >100, >500 and >1,000 TPM
and variable Q (Online Methods). Solid lines represent mean true-positive
and false-positive rates, dashed lines represent the median rates on the
same experiments. Relaxing Q leads to a higher sensitivity at the cost of
specificity. In more than half of all queries, 100% of true-positive hits can
be found with Q as high as 0.9.

©
20

16
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

2 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

A N A LY S I S

approach (Supplementary Fig. 2). These queries were performed over
varying sensitivity threshold Q (the minimum fraction of query k-mers
that must exist in order to return a ‘hit’) as well as the transcripts per
million (TPM) threshold used to select the query set (Supplementary
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on
queries that were not expressed in any experiment (Supplementary
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST,
by first ruling out experiments in which the query sequences are not
present. This allows the subsequent processing time to scale with the
size of the number of hits rather than the size of the database. We
first used SBTs to filter the full dataset consisting of 2,652 human
blood, breast and brain RNA-seq experiments. We then compared
the performance of STAR or SRA-BLAST on the filtered dataset with
the time to process the unfiltered dataset with these algorithms. Using
SBTs to first filter the data reduced the overall query time of STAR or
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments
returned by SBT with those in which the query sequence was estimated
to be expressed using Sailfish20. Because it is impractical to use existing
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files
on which we ran Sailfish (Fig. 2). Three collections of representative
queries were constructed using Sailfish, denoted by High, Medium and
Low, which included transcripts of length >1,000 nt that were likely to
be expressed at a higher, medium or low level in at least one experiment
contained in the set of 100 experiments on which Sailfish was run. The
High set was chosen to be 100 random transcripts with an estimated
abundance of >1,000 TPM in at least one experiment. The Medium and
Low query sets were similarly chosen randomly from among transcripts
with >500 and >100 TPM, respectively. These Sailfish estimates were
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch
between SBT’s definition of present (coverage of k-mers over a sufficient
fraction of the query) and Sailfish’s definition of expressed (as estimated

by read mapping and an expectation-maximization inference). These
two definitions are related, but not perfectly aligned, resulting in some
disagreement that is quantified by the false-positive rates (FPR) and
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no
results but their expression is above the TPM threshold as estimated
by Sailfish. This is supported by the fact that the average true-positive
rate at Q = 0.7 for queries that return at least one file was 96–100%,
and the median true-positive rate across all queries was 100% for all
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs
for the expression of all 214,293 known human transcripts and used these
results to identify tissue-specific transcripts (Supplementary Table 5
and Supplementary Fig. 7). This search took 3.3 d using a single thread
(Supplementary Fig. 8). There are presently no search or alignment
tools that can solve this scale of sequence search problem in a reasonable
time frame, but we estimate an equivalent search using Sailfish would
take 92 d. The speed and computational efficiency of SBTs will enable
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and
metagenomic collections as well. Researchers could search for conditions
from among thousands that are likely to express a given novel isoform or
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a
particular research question from available sequencing experiments.
Individual hospitals, sequencing centers, research consortia and
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to
find the relevant conditions for further study. SBTs enable the efficient
mining of these data and could be used to uncover biological insights
that can be revealed only through the analysis of multiple data sets from
different sources. Furthermore, SBTs do not require prior knowledge
about sequences of interest, making it possible to identify, for example,
the expression of unknown isoforms or long noncoding RNAs. This
algorithm makes it practical to search large sequencing repositories and
may open up new uses for these rich collections of data.

107

106

105

104

103

102

101

SBT

SRA-B
LA

ST
STA

R

(C
PU tim

e) STA
R

(15
-th

re
ad

)

Ti
m

e
(m

in
)

Figure 1 Estimated running times of search tools for one transcript. The
SBT per-query time was recorded using a maximum of a single filter in
active memory and one thread. The other bars show the estimated time to
achieve the same query results using SRA-BLAST and STAR.

1.0

0.9

0.8 0.7

TPM
100
500
1,000

0.6 0.5

0.8

0.6

0.4

0.2

0
0

� = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Tr
ue

 p
os

iti
ve

False positive

Figure 2 Receiver operating characteristic (ROC) curve averaged over
100 queries with estimated expression >100, >500 and >1,000 TPM
and variable Q (Online Methods). Solid lines represent mean true-positive
and false-positive rates, dashed lines represent the median rates on the
same experiments. Relaxing Q leads to a higher sensitivity at the cost of
specificity. In more than half of all queries, 100% of true-positive hits can
be found with Q as high as 0.9.

>2.5 years

©
20

16
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

2 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

A N A LY S I S

approach (Supplementary Fig. 2). These queries were performed over
varying sensitivity threshold Q (the minimum fraction of query k-mers
that must exist in order to return a ‘hit’) as well as the transcripts per
million (TPM) threshold used to select the query set (Supplementary
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on
queries that were not expressed in any experiment (Supplementary
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST,
by first ruling out experiments in which the query sequences are not
present. This allows the subsequent processing time to scale with the
size of the number of hits rather than the size of the database. We
first used SBTs to filter the full dataset consisting of 2,652 human
blood, breast and brain RNA-seq experiments. We then compared
the performance of STAR or SRA-BLAST on the filtered dataset with
the time to process the unfiltered dataset with these algorithms. Using
SBTs to first filter the data reduced the overall query time of STAR or
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments
returned by SBT with those in which the query sequence was estimated
to be expressed using Sailfish20. Because it is impractical to use existing
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files
on which we ran Sailfish (Fig. 2). Three collections of representative
queries were constructed using Sailfish, denoted by High, Medium and
Low, which included transcripts of length >1,000 nt that were likely to
be expressed at a higher, medium or low level in at least one experiment
contained in the set of 100 experiments on which Sailfish was run. The
High set was chosen to be 100 random transcripts with an estimated
abundance of >1,000 TPM in at least one experiment. The Medium and
Low query sets were similarly chosen randomly from among transcripts
with >500 and >100 TPM, respectively. These Sailfish estimates were
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch
between SBT’s definition of present (coverage of k-mers over a sufficient
fraction of the query) and Sailfish’s definition of expressed (as estimated

by read mapping and an expectation-maximization inference). These
two definitions are related, but not perfectly aligned, resulting in some
disagreement that is quantified by the false-positive rates (FPR) and
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no
results but their expression is above the TPM threshold as estimated
by Sailfish. This is supported by the fact that the average true-positive
rate at Q = 0.7 for queries that return at least one file was 96–100%,
and the median true-positive rate across all queries was 100% for all
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs
for the expression of all 214,293 known human transcripts and used these
results to identify tissue-specific transcripts (Supplementary Table 5
and Supplementary Fig. 7). This search took 3.3 d using a single thread
(Supplementary Fig. 8). There are presently no search or alignment
tools that can solve this scale of sequence search problem in a reasonable
time frame, but we estimate an equivalent search using Sailfish would
take 92 d. The speed and computational efficiency of SBTs will enable
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and
metagenomic collections as well. Researchers could search for conditions
from among thousands that are likely to express a given novel isoform or
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a
particular research question from available sequencing experiments.
Individual hospitals, sequencing centers, research consortia and
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to
find the relevant conditions for further study. SBTs enable the efficient
mining of these data and could be used to uncover biological insights
that can be revealed only through the analysis of multiple data sets from
different sources. Furthermore, SBTs do not require prior knowledge
about sequences of interest, making it possible to identify, for example,
the expression of unknown isoforms or long noncoding RNAs. This
algorithm makes it practical to search large sequencing repositories and
may open up new uses for these rich collections of data.

107

106

105

104

103

102

101

SBT

SRA-B
LA

ST
STA

R

(C
PU tim

e) STA
R

(15
-th

re
ad

)

Ti
m

e
(m

in
)

Figure 1 Estimated running times of search tools for one transcript. The
SBT per-query time was recorded using a maximum of a single filter in
active memory and one thread. The other bars show the estimated time to
achieve the same query results using SRA-BLAST and STAR.

1.0

0.9

0.8 0.7

TPM
100
500
1,000

0.6 0.5

0.8

0.6

0.4

0.2

0
0

� = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Tr
ue

 p
os

iti
ve

False positive

Figure 2 Receiver operating characteristic (ROC) curve averaged over
100 queries with estimated expression >100, >500 and >1,000 TPM
and variable Q (Online Methods). Solid lines represent mean true-positive
and false-positive rates, dashed lines represent the median rates on the
same experiments. Relaxing Q leads to a higher sensitivity at the cost of
specificity. In more than half of all queries, 100% of true-positive hits can
be found with Q as high as 0.9.

>2 days

NIH
cluster

©
20

16
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

2 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

A N A LY S I S

approach (Supplementary Fig. 2). These queries were performed over
varying sensitivity threshold Q (the minimum fraction of query k-mers
that must exist in order to return a ‘hit’) as well as the transcripts per
million (TPM) threshold used to select the query set (Supplementary
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on
queries that were not expressed in any experiment (Supplementary
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST,
by first ruling out experiments in which the query sequences are not
present. This allows the subsequent processing time to scale with the
size of the number of hits rather than the size of the database. We
first used SBTs to filter the full dataset consisting of 2,652 human
blood, breast and brain RNA-seq experiments. We then compared
the performance of STAR or SRA-BLAST on the filtered dataset with
the time to process the unfiltered dataset with these algorithms. Using
SBTs to first filter the data reduced the overall query time of STAR or
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments
returned by SBT with those in which the query sequence was estimated
to be expressed using Sailfish20. Because it is impractical to use existing
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files
on which we ran Sailfish (Fig. 2). Three collections of representative
queries were constructed using Sailfish, denoted by High, Medium and
Low, which included transcripts of length >1,000 nt that were likely to
be expressed at a higher, medium or low level in at least one experiment
contained in the set of 100 experiments on which Sailfish was run. The
High set was chosen to be 100 random transcripts with an estimated
abundance of >1,000 TPM in at least one experiment. The Medium and
Low query sets were similarly chosen randomly from among transcripts
with >500 and >100 TPM, respectively. These Sailfish estimates were
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch
between SBT’s definition of present (coverage of k-mers over a sufficient
fraction of the query) and Sailfish’s definition of expressed (as estimated

by read mapping and an expectation-maximization inference). These
two definitions are related, but not perfectly aligned, resulting in some
disagreement that is quantified by the false-positive rates (FPR) and
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no
results but their expression is above the TPM threshold as estimated
by Sailfish. This is supported by the fact that the average true-positive
rate at Q = 0.7 for queries that return at least one file was 96–100%,
and the median true-positive rate across all queries was 100% for all
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs
for the expression of all 214,293 known human transcripts and used these
results to identify tissue-specific transcripts (Supplementary Table 5
and Supplementary Fig. 7). This search took 3.3 d using a single thread
(Supplementary Fig. 8). There are presently no search or alignment
tools that can solve this scale of sequence search problem in a reasonable
time frame, but we estimate an equivalent search using Sailfish would
take 92 d. The speed and computational efficiency of SBTs will enable
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and
metagenomic collections as well. Researchers could search for conditions
from among thousands that are likely to express a given novel isoform or
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a
particular research question from available sequencing experiments.
Individual hospitals, sequencing centers, research consortia and
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to
find the relevant conditions for further study. SBTs enable the efficient
mining of these data and could be used to uncover biological insights
that can be revealed only through the analysis of multiple data sets from
different sources. Furthermore, SBTs do not require prior knowledge
about sequences of interest, making it possible to identify, for example,
the expression of unknown isoforms or long noncoding RNAs. This
algorithm makes it practical to search large sequencing repositories and
may open up new uses for these rich collections of data.

107

106

105

104

103

102

101

SBT

SRA-B
LA

ST
STA

R

(C
PU tim

e) STA
R

(15
-th

re
ad

)

Ti
m

e
(m

in
)

Figure 1 Estimated running times of search tools for one transcript. The
SBT per-query time was recorded using a maximum of a single filter in
active memory and one thread. The other bars show the estimated time to
achieve the same query results using SRA-BLAST and STAR.

1.0

0.9

0.8 0.7

TPM
100
500
1,000

0.6 0.5

0.8

0.6

0.4

0.2

0
0

� = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Tr
ue

 p
os

iti
ve

False positive

Figure 2 Receiver operating characteristic (ROC) curve averaged over
100 queries with estimated expression >100, >500 and >1,000 TPM
and variable Q (Online Methods). Solid lines represent mean true-positive
and false-positive rates, dashed lines represent the median rates on the
same experiments. Relaxing Q leads to a higher sensitivity at the cost of
specificity. In more than half of all queries, 100% of true-positive hits can
be found with Q as high as 0.9.

19
mins

single
CPU

SR
A-

BL
AS
T

SRA FASTA.gz SBT
Leaves 4966 GB 2692 GB 63 GB
Full Tree - - 200 GB

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read
sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.

Solomon, Brad, and Carl Kingsford. "Improved search of large transcriptomic
sequencing databases using split sequence bloom trees." International
Conference on Research in Computational Molecular Biology. Springer, Cham,
2017.

Sun, Chen, et al. "Allsome sequence bloom trees." International Conference
on Research in Computational Molecular Biology. Springer, Cham, 2017.

Harris, Robert S., and Paul Medvedev. "Improved representation of sequence
bloom trees." Bioinformatics 36.3 (2020): 721-727.

Bloom Filters: Tip of the Iceberg

Cohen, Saar, and Yossi Matias. "Spectral bloom filters." Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. 2003.

Nayak, Sabuzima, and Ripon Patgiri. "countBF: A General-purpose High Accuracy and Space Efficient Counting Bloom
Filter." 2021 17th International Conference on Network and Service Management (CNSM). IEEE, 2021.

There are many more than shown here…

Bonomi, Flavio, et al. "An improved construction for counting bloom filters." European Symposium on algorithms.
Springer, Berlin, Heidelberg, 2006.

Rottenstreich, Ori, Yossi Kanizo, and Isaac Keslassy. "The variable-increment counting Bloom filter." IEEE/ACM
Transactions on Networking 22.4 (2013): 1092-1105.

Counting Sketches
3201
946

5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
3887
8499
8970
3921
8925
4859

Sometimes we need more information than
‘presence/absence’…

Counting Bloom Filters

0
1
0
1
0
0
0
1
0
1

000
110
010
001
100
110
000
000
100
111

Instead of using one bit per register, lets use multiple!

Counting Bloom Filters

0
1
2
3
4
5
6

S = { 16, 8, 4, 13, 29, 11, 22 }

h1(k) = k % 7 h2(k) = 2k+1 % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

h1(k) = k % 7 h2(k) = 2k+1 % 7

0 0
1 3
2 3
3 3
4 2
5 1
6 2

_find(3)

_find(5)

Counting Bloom Filters

S = { 16, 8, 4, 13, 29, 11, 22 }

h1(k) = k % 7 h2(k) = 2k+1 % 7

0 0
1 3
2 3
3 3
4 2
5 1
6 2

_delete(5)

_delete(8)

Counting Bloom Filters

Counting Bloom Filters

000
110
010
001
100
110
000
000
100
111

, number of hash functionsk
, expected number of insertionsn
, filter size in registersm

h{1,2,3,...,k}A probabilistic data structure storing a set of values

Has four key properties:

, number of bits per registerb

Can handle deletions at the cost of allowing false negatives!

Pro:

Con:

Counting Bloom Filters

Counting Bloom Filters

3
4
2
1
4
6
8
7
2
0

At time of insertion, what information do we have?

Minimal Increase

0
1
2
3
4
5
6

S = { 1, 3, 5, 8 }

h1(k) = k % 5 h2(k) = 3k+1 % 5 h3(k) = |k - 4| % 5

0
1
2
3
4
5
6

Naive Minimal Increase

0 3
1 4
2 0
3 3
4 2
5 0
6 0

S = { 1, 3, 5, 8 }

h1(k) = k % 5 h2(k) = 3k+1 % 5 h3(k) = |k - 4| % 5

0 2
1 2
2 0
3 2
4 2
5 0
6 0

Naive Minimal Increase

_find(3)

_find(5)

_find(8)

Minimal Increase

Counting Bloom Filters

3
4
2
1
4
6
8
7
2
0

Do we know anything about our collision frequency at insertion?

Spectral Bloom Filter
A counting bloom filter with two key optimizations:

1) Minimal Increase: On insert, only increment counts that have
the minimum value.

2) Recurring Minimum: Insertions that have only a single
minimum value have unusually high collision likelihood!

For these values, create a second spectral bloom filter and store
them in both.

Bloom Filters: Tip of the Iceberg II

Fan, Bin, et al. "Cuckoo filter: Practically better than bloom." Proceedings of the 10th ACM International
on Conference on emerging Networking Experiments and Technologies. 2014.

Mitzenmacher, Michael. "Compressed bloom filters." IEEE/ACM transactions on networking 10.5 (2002): 604-612.

Crainiceanu, Adina, and Daniel Lemire. "Bloofi: Multidimensional bloom filters." Information Systems 54 (2015): 311-324.

There are many more than shown here…

Chazelle, Bernard, et al. "The bloomier filter: an efficient data structure for static support lookup tables." Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms. 2004.

The hidden problem with bloom filters…

Bloom Filter: Optimal Parameters

k* = ln 2 ⋅
m
n

Given any two values, we can optimize the third

… but we often have to guess an approximate value for !n

Cardinality
3201
946

5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
5598
8499
8970
3921
8575
4859
4960

42
6901
4336
9228
3317
399

6925
2660

Cardinality: how many distinct values
in a data stream?

Cardinality
I take cards labeled 1--1,000 and
choose a random subset of size

 to hide in my hatN

We can see one representative from the
cards in the hat; which to pick?

We want to estimate N

21
0

03
5

02
3

91
7

98
1

34
2

83
0

01
7

33
2

52
5

09
2

70
9

Minimum, median, maximum? Something else?

Cardinality

0 999
95

If minimum is 95, what's our estimate for ?N
What if minimum was 500? ...10? ... 4?

999

95 ≈ 1000/(N + 1)
N + 1 ≈ 10.5

N ≈ 9.5

Cardinality

If minimum is 95, what's our estimate for ?N

0
95

Conceptually: If we scatter points randomly across the interval, we
end up with + 1 parts, each about long

N
N 1000/(N + 1)

What if minimum was 500? ...10? ... 4?

Assuming our first ‘partition’ is about average:

Cardinality

0 1

h64(x)
264 − 1

Now imagine we have a SUHA hash (let be a 64-bit hash)h64

The randomness in the hash function turns any dataset-
cardinality problem into the “hat problem”

Cardinality

0 1

Let , where each is an independent
uniform draw between [0, 1]

M = min(X1, X2, . . . , XN) Xi

Claim: E[M] =
1

N + 1

Cardinality

0.455 0.220 0.951 0.236 0.979Attempt 1

0.968 0.234 0.835 0.642 0.349Attempt 2

0.774 0.484 0.309 0.526 0.143Attempt 3

Cardinality

Can the -smallest hash value estimate the cardinality better
than the minimum?

kth

0 1min
2nd
min

3rd
min

kth
min...

......

Cardinality

0 1

......
M1 M2 M3 Mk

Can the -smallest hash value estimate the cardinality better
than the minimum?

kth

Cardinality

0 1

E[Mk] =
k

N + 1
E[M1] =

1
N + 1

......
M1 M2 M3 Mk

Can the -smallest hash value estimate the cardinality better
than the minimum?

kth

1
N + 1

=
E[Mk]

k

= [E[M1] + (E[M2] − E[M1]) + . . . + (E[Mk] − E[Mk−1])] ⋅
1
k

1

......

0

... ...

M1 M2 M3 MkMk−1

...

Cardinality

Cardinality

1
N + 1

=
E[Mk]

k

= [E[M1] + (E[M2] − E[M1]) + . . . + (E[Mk] − E[Mk−1])] ⋅
1
k

1

......

Averages estimates for k
1

N + 1

0

... ...

M1 M2 M3 MkMk−1

...

 minimum
value (KMV)
kth

Cardinality

True cardinality = 1,000

