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Last POTD today! No labs this week!




Learning Objectives

Review and finalize fundamentals of bloom filters

Discuss strategies for counting the occurrences of objects

Introduce the concept of cardinality and cardinality estimation




Sketch

A “sketch”is a compact (reduced) representation of a dataset that acts as a
replacement for calculations.




Bloom Filters

A probabilistic data structure storing a set of values hi23,. k)

Has three key properties:

k, number of hash functions
n, expected number of insertions
m, filter size in bits

1 nk k k
Expected false positive rate: (1 — (1 — _> ) ~ (1 — e?Z")
m

m
Optimal accuracy when: k*=In2.-—
n




Bloom Filter: Website Caching

Loaded this before?

Cache this page!

Add to filter (but don't cachel)
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Maggs, Bruce M., and Ramesh K. Sitaraman. Algorithmic nuggets in content delivery. ACM SIGCOMM Computer Communication Review 45.3 (2015): 52-66.



Sequence Bloom Trees

Imagine we have a large collection of text...

TGCTAATAAACCUAGTGATG

| for a query of interest...
CGATAGCACAGGTAGATCC

TACGTAGAGGTCATTAGCC

%-. ATGGTTAGAATTAMCCCGG | And our goal is to search these files

] TACGTAGAGGTCATTAGCCG
— TGCTAATAAACCUAGTGATG




Sequence Bloom Trees

I

GTATGCACGCGATAG
TAGCATTGCGAGACG
TGTCTTTGATTCCTG
GACGCTGGAGCCGGA
TATCGCACCTACGTT
CACGGGAGCTCTCCA
GTATGCACGCGATAG
GCGAGACGCTGGAGC
CCTACGTTCAATATT
GACGCTGGAGCCGGA
TATCGCACCTACGTT
CACGGGAGCTCTCCA
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Sequence Bloom Trees

SRA 00001 SRA 00002 SRA 00003 SRAO00004 SRAO00005 SRAO00006 SRAO00007 SRA 00008



Bloom Filters: Unioning

Bloom filters can be trivially merged using bit-wise union.

0 1 0O O 0
1 0 1 1 1
2 1 2 1 2
3 1 3 0 3
4 0 U 24 o — 4
5 O 5 0 5
6 1 6 1 6
7 0 7 1 7
8 0 8 1 8
9 1 9 1 9




Sequence Bloom Trees

Are > B fraction of query
kmers e this Bloom filter?

*
*
k

If YES, move to children

Bloom filter
I If NO, stop looking

at this subtree
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Sequence Bloom Trees

Time (min)

107

10°

SRA

FASTA.gz

SBT

49606 GB

2692 GB

63 GB

200 GB
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Bloom Filters: Tip of the Iceberg
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Springer, Berlin, Heidelberg, 2006.
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There are many more than shown here...



Counting Sketches

Sometimes we need more information than
‘presence/absence’...
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Counting Bloom Filters

Instead of using one bit per register, lets use multiple!

- O - 0O OO O — O — O

000
110
010
001
100
110
000
000
100
111



Counting Bloom Filters

$={16,8,4,13,29,11,22}
hi(k)=k % 7 ha(k) = 2k+1 % 7
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Counting Bloom Filters

$={16,8,4,13,29,11,22}
hi(k)=k % 7 ha(k) = 2k+1 % 7

_find (3)

_find (5)
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Counting Bloom Filters

$={16,8,4,13,29,11,22}
hi(k)=k % 7 ha(k) = 2k+1 % 7

_delete(8)

_delete(5)
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Counting Bloom Filters @

A probabilistic data structure storing a set of values hi23,. k)
000
Has four key properties: 110
k, number of hash functions 010
n, expected number of insertions 001
m, filter size in registers 100
b, number of bits per register LI
000
Can handle deletions at the cost of allowing false negatives! 000

100
111




Counting Bloom Filters

Pro:

Con:




Counting Bloom Filters

At time of insertion, what information do we have?
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Minimal Increase

S={1,3,5,8}
hilk)=k%5 hak)=3k+1%5 hz(k) = |k-4| %5
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Naive Minimal Increase




Minimal Increase

S={1,3,5,8}
hilk)=k%5 hak)=3k+1%5 hz(k) = |k-4| %5

0 3 _find (3) 0 2
1 4 1 2
2 0 2 0
3 3 find (5) 3 2
4 2 N 4 2
5 0 5 0
6 O _find (8) 6 O

Naive Minimal Increase



Counting Bloom Filters

Do we know anything about our collision frequency at insertion?
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Spectral Bloom Filter

A counting bloom filter with two key optimizations:

1) Minimal Increase: On insert, only increment counts that have
the minimum value.

2) Recurring Minimum: Insertions that have only a single
minimum value have unusually high collision likelihood!

For these values, create a second spectral bloom filter and store
them in both.



Bloom Filters: Tip of the Iceberg |l
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on Conference on emerging Networking Experiments and Technologies. 2014.
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There are many more than shown here...




The hidden problem with bloom filters...




Bloom Filter: Optimal Parameters

m
k* =1In2 -—| Given any two values, we can optimize the third
n

... but we often have to guess an approximate value for n!




Cardinality
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Cardinality: how many distinct values
in a data stream?



Cardinality

| take cards labeled 1--1,000 and
choose a random subset of size

N to hide in my hat

We want to estimate N

We can see one representative from the
cards in the hat; which to pick?

Minimum, median, maximum? Something else?



Cardinality

What if minimum was 5007 ...107?...4?

If minimum is 95, what's our estimate for N?

.. A
0 | 999
05




Cardinality

What if minimum was 5007 ...107?...4?

If minimum is 95, what's our estimate for N?

]
0 | 999

95
Conceptually: If we scatter N points randomly across the interval, we
end up with N + 1 parts, each about 1000/(N + 1) long

Assuming our first‘partition’is about average: 95 ~ 1000/(N+ 1)

N+1~10.5
N=~95



Cardinality

Now imagine we have a SUHA hash (let /i, be a 64-bit hash)

hga(x)
264 _ |

0 1

BN
The randomness in the hash function turns any dataset-
cardinality problem into the “hat problem”




Cardinality

Let M = min(X;, X,, ..., Xy), where each X is an independent
uniform draw between [0, 1]

Claim: E[M] =
N+1

0 1

B




Cardinality

Attempt 1

Attempt 2

Attempt 3

0.455

0.220

0.951

0.236

0.979

0.968

0.234

0.835

0.642

0.349

0.774

0.484

0.309

0.526

0.143




Cardinality

Can the k”-smallest hash value estimate the cardinality better
than the minimum?

2nd 3rd kth
0 min Min min = min

e




Cardinality

Can the k”-smallest hash value estimate the cardinality better
than the minimum?

o M, M, M,

“_-




Cardinality

Can the k”-smallest hash value estimate the cardinality better
than the minimum?

o M, M, M, M, 1
E[M,] = E[M,] =

N+1 N+1




Cardinality

1 EM]
N+1 &k
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Cardinality

1 E[M]
N+1 &k

1
= [IE[MI]I + (IE[Mz] — E[Ml])l +... + (IE[Mk] — E[Mk_l])] n

Yo

Ml M2 M3 Mk—le

1

th o 1
k™ minimum Averages k estimates for
value (KMV) N+ 1




Cardinality

) Min
O 10th smallest
100th smallest

Estimate
2000 4000 6000 8000 10000
|

0
|

True cardinality = 1,000 Tl




