
CS 225
Data Structures

March 28 – Graphs
G Carl Evans

Disjoint Sets Analysis

The iterated log function:
The number of times you can take a log of a number.

log*(n) =
0 , n ≤ 1
1 + log*(log(n)) , n > 1

What is lg*(265536)?

Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and
path compression on find:

Any sequence of m union and find operations result in the
worse case running time of O(____________),

where n is the number of items in the Disjoint Sets.

In Review: Data Structures

Array
- Sorted Array
- Unsorted Array

- Stacks
- Queues
- Hashing
- Heaps

- Priority Queues
- UpTrees

- Disjoint Sets

Linked
- Doubly Linked List
- Trees

- BTree
- Binary Tree

- Huffman Encoding
- kd-Tree
- AVL Tree

In Review: Data Structures

Array
- Sorted Array
- Unsorted Array

- Stacks
- Queues
- Hashing
- Heaps

- Priority Queues
- UpTrees

- Disjoint Sets

Linked
- Doubly Linked List
- Skip List
- Trees

- BTree
- Binary Tree

- Huffman Encoding
- kd-Tree
- AVL Tree

Graphs

Graphs

To study all of these structures:
1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms

Graph Vocabulary

G = (V, E)
|V| = n
|E| = m

G1

G2
G3

Incident Edges:
I(v) = { {x, v} in E }

Degree(v): |I|

Adjacent Vertices:
A(v) = { x : {x, v} in E }

Path(G2): Sequence of vertices
connected by edges

Cycle(G1): Path with a
common begin and end vertex
with at least 3 vertices.

Simple Graph(G): A graph with
no self loops or multi-edges.

(2, 5)

Graph Vocabulary

G = (V, E)
|V| = n
|E| = m

G1

G2
G3

Subgraph(G):
G’ = (V’, E’):

V’ ∈ V, E’ ∈ E, and
(u, v) ∈ E’ à u ∈ V’, v ∈ V’

Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)

(2, 5)

Running times are often reported by n, the number of
vertices, but often depend on m, the number of edges.

How many edges? Minimum edges:
Not Connected:

Connected*:

Maximum edges:
Simple:

Not simple:

XU

V

W

Z

Y

a

c

b

e

d

f
g

h

Graph ADT Functions:
- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);

- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);

- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);

- origin(Edge e);
- destination(Edge e);

Data:
- Vertices
- Edges
- Some data structure

maintaining the
structure between
vertices and edges.

X

V

W

Z

Y

b

e
d

f
g

h

Graph Implementation Idea

v

u

w

a c
b

z
d

Graph Implementation: Edge List

v

u

w

a c
b

z
d

Vertex Collection:

Edge Collection:u

v

w

z

u v a

v w b

u w c

w z d

Graph Implementation: Edge List

v

u

w

a c
b

z
d

insertVertex(K key):

removeVertex(Vertex v):u

v

w

z

u v a

v w b

u w c

w z d

Graph Implementation: Edge List

v

u

w

a c
b

z
d

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

G.incidentEdges(v1).contains(v2)

u

v

w

z

u v a

v w b

u w c

w z d

Graph Implementation: Edge List

v

u

w

a c
b

z
d

insertEdge(Vertex v1, Vertex v2, K key):

u

v

w

z

u v a

v w b

u w c

w z d

Graph Implementation: Adjacency Matrix

v

u

w

a c
b

z
d

insertVertex(K key);
removeVertex(Vertex v);
areAdjacent(Vertex v1, Vertex v2);
incidentEdges(Vertex v);

u

v

w

z

a

b

c

d

u v w z

u

v

w

z

