CS 225

Data Structures

February 23 – BST G Carl Evans

remove(40);

remove(25);

remove(10);

remove(13);

BST Analysis – Running Time

Operation	BST Worst Case
find	
insert	
delete	
traverse	

Every operation that we have studied on a BST depends on the height of the tree: **O(h)**.

...what is this in terms of **n**, the amount of data?

We need a relationship between **h** and **n**: f(h) ≤ n ≤ g(h)

Q: What is the maximum number of nodes in a tree of height **h**?

Q: What is the minimum number of nodes in a tree of height **h**?

What is the maximum height for a tree of **n** nodes?

Therefore, for all BST: Lower bound:

Upper bound:

The height of a BST depends on the order in which the data is inserted into it.

ex: 1324576 vs. 4236715

Q: How many different ways are there to insert keys into a BST?

Q: What is the average height of all the arrangements?

Q: How many different ways are there to insert keys into a BST?

Q: What is the average height of all the arrangements?

BST Analysis – Running Time

Operation	BST Average case	BST Worst case	Sorted array	Sorted List
find				
insert				
delete				
traverse				

Height-Balanced Tree

What tree makes you happier?

A tree is height balanced if: